精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆 的离心率为 ,其左顶点A在圆O:x2+y2=16上.

(1)求椭圆W的方程;
(2)若点P为椭圆W上不同于点A的点,直线AP与圆O的另一个交点为Q.是否存在点P,使得 ?若存在,求出点P的坐标;若不存在,说明理由.

【答案】
(1)解:因为椭圆W的左顶点A在圆O:x2+y2=16上,

令y=0,得x=±4,所以a=4.

又离心率为 ,所以 ,所以

所以b2=a2﹣c2=4,

所以W的方程为


(2)解:

法一:设点P(x1,y1),Q(x2,y2),设直线AP的方程为y=k(x+4),

与椭圆方程联立得

化简得到(1+4k2)x2+32k2x+64k2﹣16=0

因为﹣4为上面方程的一个根,所以 ,所以

所以

因为圆心到直线AP的距离为

所以

因为

代入得到

显然 ,所以不存在直线AP,使得

法二:

设点P(x1,y1),Q(x2,y2),设直线AP的方程为x=my﹣4,

与椭圆方程联立得

化简得到(m2+4)y2﹣8my=0,由△=64m2>0得m≠0.

显然0是上面方程的一个根,所以另一个根,即

因为圆心到直线AP的距离为

所以

因为

代入得到

,则m=0,与m≠0矛盾,矛盾,

所以不存在直线AP,使得

法三:假设存在点P,使得 ,则 ,得

显然直线AP的斜率不为零,设直线AP的方程为x=my﹣4,

,得(m2+4)y2﹣8my=0,

由△=64m2>0得m≠0,

所以

同理可得

所以由

则m=0,与m≠0矛盾,

所以不存在直线AP,使得


【解析】(1)由题意求出a,通过离心率求出c,然后求解椭圆的标准方程.(2)法一:设点P(x1 , y1),Q(x2 , y2),设直线AP的方程为y=k(x+4),与椭圆方程联立,利用弦长公式求出|AP|,利用垂径定理求出|oa|,即可得到结果.
法二:设点P(x1 , y1),Q(x2 , y2),设直线AP的方程为x=my﹣4,与椭圆方程联立与椭圆方程联立得求出|AP|,利用垂径定理求出|oa|,即可得到结果.
法三:假设存在点P,推出 ,设直线AP的方程为x=my﹣4,联立直线与椭圆的方程,利用韦达定理,推出 ,求解即可.
【考点精析】本题主要考查了椭圆的标准方程的相关知识点,需要掌握椭圆标准方程焦点在x轴:,焦点在y轴:才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设集合A={x|x2+4x=0,x∈R},B={x|x2+2(a+1)x+a2﹣1=0,x∈R},
(1)若A∩B=A∪B,求实数a的值;
(2)若A∩B=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C,所对的边分别为a,b,c.已知sinA+sinC=psinB(p∈R).且ac= b2
(Ⅰ)当p= ,b=1时,求a,c的值;
(Ⅱ)若角B为锐角,求p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位为绿化环境,移栽了甲、乙两种大树各2株.设甲、乙两种大树移栽的成活率分别为,且各株大树是否成活互不影响.求移栽的4株大树中:

1)两种大树各成活1株的概率;

2)成活的株数的分布列与期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.
(Ⅰ)证明:CD⊥AE;
(Ⅱ)证明:PD⊥平面ABE;
(Ⅲ)求二面角A﹣PD﹣C的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}中,a1=1,an , an+1是方程x2﹣(2n+1)x+ 的两个根,则数列{bn}的前n项和Sn=( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1 , ∠BAA1=60°.
(Ⅰ)证明:AB⊥A1C;
(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C与平面BB1C1C所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列{an}中,an>0,a1= ,如果an+1是1与 的等比中项,那么a1+ + + +… 的值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

(1)当时,求证:

(2)当时,试讨论方程的解的个数.

查看答案和解析>>

同步练习册答案