精英家教网 > 高中数学 > 题目详情
已知a,x∈R,A={2,4,x2-5x+9},B={3,x2+ax+a}.求:
(1)使A={2,3,4}的x值;
(2)使2∈B,B?A的a,x的值.
分析:(1)由已知A={2,4,x2-5x+9},A={2,3,4},根据集合相等可得x2-5x+9=3,解出即可;
(2)由2∈B,B?A,利用元素与集合之间的属于关系、集合之间的包含关系可得x2+ax+a=2且x2-5x+9=3,联立解出即可.
解答:解:(1)∵A={2,4,x2-5x+9},A={2,3,4},
∴x2-5x+9=3,化为x2-5x+6=0,
解得x=2或3.
(2)∵2∈B,B?A,
∴x2+ax+a=2且x2-5x+9=3,
由x2-5x+9=3,化为x2-5x+6=0,解得x=2或3.
当x=2时,22+2a+a=2,解得a=-
2
3

当x=3时,32+3a+a=2,解得a=-
7
4
点评:本题综合考查了元素与集合之间的属于关系、集合之间的基本关系、一元二次方程的解法等基础知识,正确理解是解题的关键,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源:河南省郑州市第四十七中学2010-2011学年高三上学期文数期中考试试题 题型:044

已知A={x||x-a|<4},B={x|x2-4x-5>0}.

(Ⅰ)若a=1,求A∩B;

(Ⅱ)若A∪B=R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)讨论函数f(x)在区间(-∞,0)上的单调性;
(Ⅲ)若数学公式,设g(x)是函数f(x)在区间[0,+∞)上的导函数,问是否存在实数a,满足a>1并且使g(x)在区间数学公式上的值域为数学公式,若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2011年高三数学第一轮基础知识训练(20)(解析版) 题型:解答题

已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)讨论函数f(x)在区间(-∞,0)上的单调性;
(Ⅲ)若,设g(x)是函数f(x)在区间[0,+∞)上的导函数,问是否存在实数a,满足a>1并且使g(x)在区间上的值域为,若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:江苏高考真题 题型:解答题

已知函数(x∈R,p1,p2为常数),函数f(x)定义为:对每个给定的实数x,
(1)求f(x)=f1(x)对所有实数x成立的充分必要条件(用p1,p2表示);
(2)设a,b是两个实数,满足a<b且p1,p2∈(a,b),若f(a)=f(b),求证:函数 f(x)在区间[a,b]上的单调增区间的长度之和为(闭区间[m,n]的长度定义为n-m)。

查看答案和解析>>

同步练习册答案