精英家教网 > 高中数学 > 题目详情

【题目】如图,在平面直角坐标系xOy中,已知直线l:x-y-2=0,抛物线C:y2=2px(p>0).

(1)若直线l过抛物线C的焦点,求抛物线C的方程;
(2)已知抛物线C上存在关于直线l对称的相异两点P和Q.
①求证:线段PQ的中点坐标为(2-p , -p);
②求p的取值范围.

【答案】
(1)

解: 轴的交点坐标为

即抛物线的焦点为


(2)

解:① 设点

则: ,即

关于直线 对称,

中点一定在直线

线段 上的中点坐标为

中点坐标为

,即关于 有两个不等根


【解析】(1)求出抛物线的焦点坐标,然后求解抛物线方程.(2):①设点P(x1 , y1),Q(x2 , y2),通过抛物线方程,求解kPQ , 通过P,Q关于直线l对称,点的kPQ=﹣1,推出 ,PQ的中点在直线l上,推出 =2﹣p,即可证明线段PQ的中点坐标为(2﹣p,﹣p);②利用线段PQ中点坐标(2﹣p,﹣p).推出 ,得到关于y2+2py+4p2﹣4p=0,有两个不相等的实数根,列出不等式即可求出p的范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】求下列各曲线的标准方程.

(1)长轴长为,离心率为,焦点在轴上的椭圆;

(2)已知双曲线的渐近线方程为,焦距为,求双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,左顶点为,过原点且斜率不为0的直线与椭圆交于两点,其中点在第二象限,过点轴的垂线交于点

⑴求椭圆的标准方程;

⑵当直线的斜率为时,求的面积;

⑶试比较大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,以坐标原点O为圆心的单位圆与x轴正半轴相交于点A,点B,P在单位圆上,且

(1)求的值;

(2)设 ,四边形的面积为,求的最值及此时的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】记U={1,2,…,100},对数列{an}(n∈N*)和U的子集T,若T=,定义ST=0;若T={t1 , t2 , …,tk},定义ST= + +…+ .例如:T={1,3,66}时,ST=a1+a3+a66 . 现设{an}(n∈N*)是公比为3的等比数列,且当T={2,4}时,ST=30.
(1)求数列{an}的通项公式;
(2)对任意正整数k(1≤k≤100),若T{1,2,…,k},求证:ST<ak+1
(3)设CU,DU,SC≥SD , 求证:SC+SC∩D≥2SD

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD是平行四边形,平面AED⊥平面ABNCD,EF∥AB,AB=2,BC=EF=1,AE= ,∠BAD=60°,G为BC的中点.
(1)求证:FG∥平面BED;
(2)求证:平面BED⊥平面AED;
(3)求直线EF与平面BED所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆 1(a> )的右焦点为F,右顶点为A,已知 ,其中O为原点,e为椭圆的离心率.
(1)求椭圆的方程;
(2)设过点A的直线l与椭圆交于B(B不在x轴上),垂直于l的直线与l交于点M,与y轴交于点H,若BF⊥HF,且∠MOA=∠MAO,求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处有极值.

(1)求的值;

(2)求的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,且

(1)证明:是等比数列;

(2)求数列的通项公式,并求出n为何值时,取得最小值,并说明理由。

查看答案和解析>>

同步练习册答案