精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,圆的圆心为.已知点,且为圆上的动点,线段的中垂线交于点

1)求点的轨迹方程;

2)设点的轨迹为曲线,若四边形的四个顶点都在曲线上,对角线互相垂直并且它们的交点恰为点,求四边形面积的取值范围.

【答案】1 2[2]

【解析】

1)根据条件可以判断出,则点的轨迹是以为焦点,长轴长为的椭圆,

2)联立直线与椭圆方程,利用根与系数关系表示出,再表示出即可.

解:(1)因为为线段中垂线上一点,所以

因为,所以

则点的轨迹是以为焦点,长轴长为的椭圆,所以轨迹方程为

(2)因为对角线互相垂直,所以中至少有一条斜率存在,

不妨设的斜率为

时,,此时

时,过点,故的方程为

将此式代入

,则

从而

时,的斜率为,同上可得

故四边形

,当且仅当时,

此时,显然是以为自变量的增函数,

所以

综上所述,四边形面积的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】蝴蝶定理因其美妙的构图,像是一只翩翩起舞的蝴蝶,一代代数学名家蜂拥而证,正所谓花若芬芳蜂蝶自来.如图,已知圆的方程为,直线与圆交于,直线与圆交于.原点在圆.

1)求证:.

2)设轴于点轴于点.求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,已知函数与函数有交点,且交点横坐标之和不大于,求的取值范围_________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方形与梯形所在的平面互相垂直, ,点在线段上.

() 若点的中点,求证:平面

() 求证:平面平面

() 当平面与平面所成二面角的余弦值为时,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)设,求函数的单调区间;

(Ⅱ)若曲线在公共点处有相同的切线,求点的横坐标;

(Ⅲ)设,且曲线总存在公切线,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,讨论的单调性;

(2)若,且对于函数的图象上两点 ,存在,使得函数的图象在处的切线.求证;.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为更好地落实农民工工资保证金制度,南方某市劳动保障部门调查了年下半年该市名农民工(其中技术工、非技术工各名)的月工资,得到这名农民工月工资的中位数为百元(假设这名农民工的月工资均在(百元)内)且月工资收入在(百元)内的人数为,并根据调查结果画出如图所示的频率分布直方图:

(Ⅰ)求的值;

(Ⅱ)已知这名农民工中月工资高于平均数的技术工有名,非技术工有名,则能否在犯错误的概率不超过的前提下认为是不是技术工与月工资是否高于平均数有关系?

参考公式及数据:,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,一楼房高米,某广告公司在楼顶安装一块宽米的广告牌,为拉杆,广告牌的倾角为,安装过程中,一身高为米的监理人员站在楼前观察该广传牌的安装效果:为保证安全,该监理人员不得站在广告牌的正下方:设米,该监理人员观察广告牌的视角.

(1)试将表示为的函数;

(2)求点的位置,使取得最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在十九大“建设美丽中国”的号召下,某省级生态农业示范县大力实施绿色生产方案,对某种农产品的生产方式分别进行了甲、乙两种方案的改良。为了检查甲、乙两种方案的改良效果,随机在这两种方案中各任意抽取了40件产品作为样本逐件称出它们的重量(单位:克),重量值落在之间的产品为合格品,否则为不合格品。下表是甲、乙两种方案样本频数分布表。

产品重量

甲方案频数

乙方案频数

6

2

8

12

14

18

8

6

4

2

(1)根据上表数据求甲(同组中的重量值用组中点数值代替)方案样本中40件产品的平均数和中位数

(2)由以上统计数据完成下面列联表,并回答有多大把握认为“产品是否为合格品与改良方案的选择有关”.

甲方案

乙方案

合计

合格品

不合格品

合计

参考公式其中.

临界值表

0.100

0.050

0.025

0.010

0.001

2.706

3.814

5.024

6.635

10.828

查看答案和解析>>

同步练习册答案