精英家教网 > 高中数学 > 题目详情
17.在多面体ABCDE中,ABCD是矩形,平面ABCD⊥平面CDE,CD⊥DE,2DE=2DC=BC,F是棱BC的中点.
(1)证明:AF⊥EF;
(2)已知CD=1,求点B到平面AEF的距离.

分析 (1)连结DF,AF.证明ED⊥AF,AF⊥DF,得到AF⊥面DEF,即可得到AF⊥EF.
(2)利用VB-AEF=VE-ABF 求解.

解答 解:(1)证明:连结DF,AF.
平面ABCD⊥平面CDE,平面ABCD∩平面CDE=CD,CD⊥DE,∴DE⊥面ABCD.
∴ED⊥AF,
在矩形ABCD中,AB=DC=CF=FB,∴∠CFD=∠BFA=90°.即AF⊥DF,
∴AF⊥面DEF,又因为EF?面EFD,∴AF⊥EF.
(2)设点B到平面AEF的距离为h,且2DE=2DC=BC=2
∵VB-AEF=VE-ABF,∴$\frac{1}{3}×{s}_{△AEF}×h=\frac{1}{3}×{s}_{ABF}×ED$.,EF=$\sqrt{E{D}^{2}+C{D}^{2}+C{F}^{2}}=\sqrt{3}$
∵${s}_{△AEF}=\frac{1}{2}×AE×EF=\frac{1}{2}×\sqrt{2}×\sqrt{3}=\frac{\sqrt{6}}{2}$,${s}_{△ABF}=\frac{1}{2}×AB×BF=\frac{1}{2}$,
解得h=$\frac{\sqrt{6}}{6}$,即B到平面AEF的距离为$\frac{\sqrt{6}}{6}$

点评 本题考查了空间线线垂直的判定,等体积法求点面距离,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=-x3+ax2-x-2在(-∞,+∞)上是单调函数,则实数a的取值范围是(  )
A.(-∞,-$\sqrt{3}$)∪($\sqrt{3}$,+∞)B.(-$\sqrt{3}$,$\sqrt{3}$)C.(-∞,-$\sqrt{3}$]∪[$\sqrt{3}$,+∞)D.[-$\sqrt{3}$,$\sqrt{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设直线x-y-a=0与圆x2+y2=4相交于A,B两点,O为坐标原点,若△AOB为等边三角形,则实数a的值为(  )
A.$±\sqrt{3}$B.$±\sqrt{6}$C.±3D.±9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设函数$f(x)={log_{\frac{1}{2}}}(a{x^2}+2x-1)$,$g(x)=\frac{{2+2sin(2x+\frac{π}{6})}}{{sinx+\sqrt{3}cosx}}$,若不论x2取何值,f(x1)>g(x2)对任意${x_1}∈[\frac{7}{10},\frac{3}{2}]$总是恒成立,则a的取值范围为(  )
A.$(-∞,-\frac{7}{10})$B.$(-∞,-\frac{4}{5})$C.$(-\frac{63}{80},+∞)$D.$(-\frac{40}{49},-\frac{4}{5})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若函数f(x)满足f(2x-1)=x+1,则f(3)等于(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在矩形ABCD中,AB=2BC,点M在边CD上,点F在边AB上,且DF⊥AM,垂足为E,若将△ADM沿AM折起,使点D位于D′位置,连接D′B,D′C,得四棱锥D′-ABCM.
(1)求证:平面D′EF⊥平面AMCB;
(2)若∠D′EF=$\frac{π}{3}$,直线D′F与平面ABCM所成角的大小为$\frac{π}{3}$,求几何体A-D′EF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.若函数f(x)=ax3-bx+4,当x=2时,函数f(x)有极值-$\frac{4}{3}$.
(1)求函数的解析式;
(2)若方程f(x)=k有3个不同的根,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数$f(x)=\left\{\begin{array}{l}({a-1})x+4-2a,x<1\\ 1+{log_2}x,x≥1\end{array}\right.$,若f(x)的值域为R,则实数a的取值范围是(  )
A.(1,2]B.(-∞,2]C.(0,2]D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆$C:\frac{x^2}{4}+\frac{y^2}{3}=1$,直线l:$\left\{\begin{array}{l}x=-3+\sqrt{3}t\\ y=2\sqrt{3}+t\end{array}\right.(t为参数)$.
(1)写出椭圆C的参数方程及直线l的普通方程;
(2)设A(1,0),若椭圆C上的点P满足到点A的距离为$\frac{3}{2}$,求点P的坐标.

查看答案和解析>>

同步练习册答案