精英家教网 > 高中数学 > 题目详情

【题目】某城市理论预测2010年到2014年人口总数与年份的关系如下表所示

年份2010+x(年)

0

1

2

3

4

人口数y(十万)

5

7

8

11

19

(1)请根据上表提供的数据,求出y关于x的线性回归方程;

(2) 据此估计2015年该城市人口总数。

【答案】(1;(2196.

【解析】试题分析:(1)先求出五对数据的平均数,求出年份和人口数的平均数,得到样本中心点,把所给的数据代入公式,利用最小二乘法求出线性回归方程的系数,再求出a的值,从而得到线性回归方程;

2)把x=5代入线性回归方程,得到,即2015年该城市人口数大约为19.6(十万).

试题解析:

解:1

= 0×5+1×7+2×8+3×11+4×19=132

=

y关于x的线性回归方程为

2)当x=5时, ,即

据此估计2015年该城市人口总数约为196.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】现从某班的一次期末考试中,随机的抽取了七位同学的数学(满分150分)、物理(满分110分)成绩如下表所示,数学、物理成绩分别用特征量表示,

特征量

1

2

3

4

5

6

7

t

101

124

119

106

122

118

115

y

74

83

87

75

85

87

83

关于t的回归方程;

(2)利用(1)中的回归方程,分析数学成绩的变化对物理成绩的影响,并估计该班某学生数学成绩130分时,他的物理成绩(精确到个位).

附:回归方程 中斜率和截距的最小二乘估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(Ⅰ)若有相同的单调区间,求的取值范围;

(Ⅱ)令),若在定义域内有两个不同的极值点.

(i)求的取值范围;

(ii)设两个极值点分别为 ,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,且点在椭圆上.

求椭圆的标准方程;

已知动直线过点且与椭圆交于两点.试问轴上是否存在定点,使得恒成立?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在区间上有最大值4 和最小值1,设.

(1)求的值;

(2)若不等式在区间上有解,求实数的取值范围;

(3)若有三个不同的实数解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【选修4-4:坐标系与参数方程】

在平面直角坐标系中,以坐标原点为极点, 轴的正半轴为极轴建立极坐标系.已知曲线的极坐标方程为.倾斜角为,且经过定点的直线与曲线交于两点.

(Ⅰ)写出直线的参数方程的标准形式,并求曲线的直角坐标方程;

(Ⅱ)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】各项均为正数的数列{an}中,前n项和

(1)求数列{an}的通项公式;

(2)若恒成立,求k的取值范围;

(3)是否存在正整数mk,使得amam+5ak成等比数列?若存在,求出mk的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】.魔术师从一个装有标号为1,2,3的小球的盒子中,无放回地变走两个小球,每次变走一个,先变走的小球的标号为m,后变走的小球的标号为n,这样构成有序数对(m,n).写出这个魔术的所有结果.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校举行汉字听写比赛,为了了解本次比赛成绩情况,从得分不低于50分的试卷中随机抽取100名学生的成绩(得分均为整数,满分100分)进行统计,请根据频率分布表中所提供的数据,解答下列问题:

组号

分组

频数

频率

第1组

[50,60)

5

0.05

第2组

[60,70)

0.35

第3组

[70,80)

30

第4组

[80,90)

20

0.20

第5组

[90,100]

10

0.10

合计

100

1.00

(Ⅰ)求的值;

(Ⅱ)若从成绩较好的第3、4、5组中按分层抽样的方法抽取6人参加市汉字听写比赛,并从中选出2人做种子选手,求2人中至少有1人是第4组的概率。

查看答案和解析>>

同步练习册答案