【题目】如图,三棱柱ABC﹣A1B1C1中,点A1在平面ABC内的射影O为AC的中点,A1O=2,AB⊥BC,AB=BC= 点P在线段A1B上,且cos∠PAO= ,则直线AP与平面A1AC所成角的正弦值为 .
科目:高中数学 来源: 题型:
【题目】已知抛物线C:y2=﹣4x. (Ⅰ)已知点M在抛物线C上,它与焦点的距离等于5,求点M的坐标;
(Ⅱ)直线l过定点P(1,2),斜率为k,当k为何值时,直线l与抛物线:只有一个公共点;两个公共点;没有公共点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,三个内角是A,B,C的对边分别是a,b,c,其中c=10,且 .
(1)求证:△ABC是直角三角形;
(2)设圆O过A,B,C三点,点P位于劣弧AC上,∠PAB=60°,求四边形ABCP的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆E: =1(a>b>0)的离心率为 ,右焦点为F,椭圆与y轴的正半轴交于点B,且|BF|= .
(1)求椭圆E的方程;
(2)若斜率为1的直线l经过点(1,0),与椭圆E相交于不同的两点M,N,在椭圆E上是否存在点P,使得△PMN的面积为 ,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,多面体ABCDPE的底面ABCD是平行四边形,AD=AB=2, =0,PD⊥平面ABCD,EC∥PD,且PD=2EC=2,则二面角A﹣PB﹣E的大小为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若a,b是函数f(x)=x2﹣px+q(p>0,q>0)的两个不同的零点,且a,b,﹣4这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q的值等于( )
A.16
B.10
C.26
D.9
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】观察下列等式: (sin )﹣2+(sin )﹣2= ×1×2;
(sin )﹣2+(sin )﹣2+(sin )﹣2+sin( )﹣2= ×2×3;
(sin )﹣2+(sin )﹣2+(sin )﹣2+…+sin( )﹣2= ×3×4;
(sin )﹣2+(sin )﹣2+(sin )﹣2+…+sin( )﹣2= ×4×5;
…
照此规律,
(sin )﹣2+(sin )﹣2+(sin )﹣2+…+(sin )﹣2= .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com