20£®ÔÚij·þ×°Åú·¢Êг¡£¬¼¾½ÚÐÔ·þ×°µ±¼¾½Ú¼´½«À´ÁÙʱ£¬ÏúÊÛ¼Û¸ñ³ÊÏÖÉÏÉýÇ÷ÊÆ£¬Éèij·þ×°µÚÒ»ÖÜÏúÊÛ¼Û¸ñΪ10Ôª£¬°´Ã¿ÖÜ£¨7Ì죩ÕǼÛ2Ôª£¬6Öܺó¿ªÊ¼±£³Ö¼Û¸ñƽÎÈÏúÊÛ£»10Öܺ󣬵±¼¾½Ú¼´½«¹ýȥʱ£¬Æ½¾ùÿÖÜÏ÷¼Û2Ôª£¬Ö±µ½16ÖÜÄ©£¬¸Ã·þ×°ÒѲ»ÔÙÏúÊÛ£®
£¨1£©ÊÔ½¨Á¢¼Û¸ñp£¨Ôª£©ÓëÖÜ´ÎtÖ®¼äµÄº¯Êý¹Øϵʽ£»
£¨2£©Èô´Ë·þװÿÖܽø¼Ûq£¨Ôª£©ÓëÖÜ´ÎtÖ®¼äµÄ¹ØϵΪq=-0.125£¨t-8£©2+12£¬t¡Ê[1£¬16]£¬t¡ÊNÊÔÎʸ÷þ×°µÚ¼¸ÖÜÿ¼þÏúÊÛÀûÈóL×î´ó£¿

·ÖÎö £¨1£©ÀûÓÃÒÑÖªÌõ¼þ£¬Í¨¹ý·Ö¶Îº¯ÊýÇó½âº¯ÊýµÄ½âÎöʽ¼´¿É£®
£¨2£©Í¨¹ýº¯ÊýµÄ½âÎöʽÇó³ö£¬Ã¿¶ÎÉϵÄ×îÖµ£¬ÍƳö½á¹û¼´¿É£®

½â´ð ½â£º£¨1£©µ±t¡Ê[1£¬6]ʱ£¬p=8+2t£»
µ±t¡Ê[7£¬10]ʱ£¬p=20£»
µ±t¡Ê[11£¬16]ʱ£¬p=40-2t£®
ËùÒÔ$p=\left\{\begin{array}{l}8+2t£¬t¡Ê[16]\\ 20£¬t¡Ê[7£¬10]\\ 40-2t£¬t¡Ê[11£¬16]\end{array}\right.t¡ÊN$
£¨2£©ÓÉÓÚÿ¼þÏúÊÛÀûÈó=ÊÛ¼Û-½ø¼Û£¬ËùÒÔÿ¼þÏúÊÛÀûÈóL=p-q£®
ËùÒÔ£¬µ±t¡Ê[1£¬6]ʱ£¬
L=8+2t+0.125£¨t-8£©2-12=0.125t2+4£¬
µ±t=6ʱ£¬LÈ¡×î´óÖµ8.5£»
µ±t¡Ê[7£¬10]ʱ£¬L=0.125t2-2t+16=$\frac{1}{8}$£¨t-8£©2+8£¬
µ±t=10ʱ£¬LÈ¡×î´óÖµ8.5£»
µ±t¡Ê[11£¬16]ʱ£¬
L=0.125t2-4t+36=$\frac{1}{8}$£¨t-16£©2+4£¬
µ±t=11ʱ£¬LÈ¡×î´óÖµ7.125£®
Òò´Ë£¬¸Ã·þ×°µÚ6»òÕß10ÖÜÿ¼þÏúÊÛÀûÈó×î´ó£®

µãÆÀ ±¾Ì⿼²é·Ö¶Îº¯ÊýµÄ½âÎöʽµÄÇ󷨣¬º¯ÊýÓë·½³ÌµÄÓ¦Ó㬿¼²é¼ÆËãÄÜÁ¦£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®»¯¼ò£º$\frac{1}{lo{g}_{5}7}$+$\frac{1}{lo{g}_{3}7}$+$\frac{1}{lo{g}_{2}7}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®ÃüÌâ¡°Èôx£¾y£¬Ôòx2£¾y2¡±µÄ·ñÃüÌâÊÇÈôx¡Üy£¬Ôòx2¡Üy2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®É躯Êýf£¨x£©=$\left\{\begin{array}{l}5-{log_3}£¨1-x£©£¬x£¼1\\{3^x}-2£¬x¡Ý1\end{array}\right.$£¬ÔòÂú×ãf£¨x£©¡Ý7µÄxµÄÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®[$\frac{8}{9}$£¬1£©B£®[$\frac{8}{9}$£¬+¡Þ£©C£®[2£¬+¡Þ£©D£®[$\frac{8}{9}$£¬1£©¡È[2£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÓÐ3ÃûÄÐÉú£¬2ÃûÅ®Éú£¬°´ÕÕ²»Í¬µÄÒªÇóÅŶӣ¬Çó²»Í¬µÄÅŶӷ½·¨ÖÖÊý£®
£¨1£©È«ÌåÕ¾³ÉÒ»ÅÅ£¬ÆäÖмײ»ÔÚ×î×ó¶Ë£¬ÒÒ²»ÔÚ×îÓҶˣ»
£¨2£©È«ÌåÕ¾³ÉÒ»ÅÅ£¬¼×¡¢ÒÒÖмä±ØÐëÓÐ1ÈË£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖª¡÷ABCÄÚ½ÓÓÚÔ²O£ºx2+y2=1£¨OΪ×ø±êÔ­µã£©£¬ÇÒ3$\overrightarrow{OA}$+4$\overrightarrow{OB}$+5$\overrightarrow{OC}$=0£¬
£¨1£©Çó¡÷AOCµÄÃæ»ý£»
£¨2£©Èô¡ÏxOA=-$\frac{¦Ð}{4}$£¬ÉèÒÔÉäÏßOxΪʼ±ß£¬ÉäÏßOCΪÖÕ±ßËùÐγɵĽÇΪ¦È£¬ÅжϦȵÄÈ¡Öµ·¶Î§£®
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬ÇóCµãµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖªº¯Êýf£¨x£©=$\frac{2x+3}{3x}$£¬ÊýÁÐ{an}Âú×ãa1=1£¬an+1=f£¨$\frac{1}{{a}_{n}}$£©£¬n¡ÊN*£¬
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÁîTn=a1a2-a2a3+a3a4-a4a5+¡­-a2na2n+1£¬ÇóTn£»
£¨3£©Áîbn=$\frac{1}{{a}_{n-1}{a}_{n}}$ £¨n¡Ý2£©£¬b1=3£¬Sn=b1+b2+¡­+bn£¬ÇóSn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®º¯Êýy=sin£¨-2x+$\frac{¦Ð}{6}$£©µÄµ¥µ÷µÝÔöÇø¼äÊÇ£¨¡¡¡¡£©
A£®[-$\frac{¦Ð}{6}$+2k¦Ð£¬$\frac{¦Ð}{3}$+2k¦Ð]£¨k¡ÊZ£©B£®$[\frac{¦Ð}{3}+2k¦Ð£¬\frac{5¦Ð}{6}+2k¦Ð]£¨k¡ÊZ£©$
C£®[-$\frac{¦Ð}{6}$+k¦Ð£¬$\frac{¦Ð}{3}$+k¦Ð]£¨k¡ÊZ£©D£®$[\frac{¦Ð}{3}+k¦Ð£¬\frac{5¦Ð}{6}+k¦Ð]£¨k¡ÊZ£©$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖªº¯Êýf£¨x£©=2sin£¨x-$\frac{¦Ð}{3}$£©cos£¨x-$\frac{¦Ð}{3}$£©+2$\sqrt{3}$cos2£¨x-$\frac{¦Ð}{3}$£©
£¨1£©Çóº¯Êýf£¨x£©µÄ×î´óÖµ¼°È¡µÃ×î´óֵʱÏàÓ¦µÄxµÄÖµ£»
£¨2£©º¯Êýy=f£¨2x£©-aÔÚÇø¼ä$[{0£¬\frac{¦Ð}{4}}]$ÉÏÇ¡ÓÐÁ½¸öÁãµãx1£¬x2£¬Çótan£¨x1+x2£©µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸