精英家教网 > 高中数学 > 题目详情

【题目】已知函数是偶函数.

1)求的值;

2)设,若函数的图象有且只有一个公共点,求实数的取值范围.

【答案】(1;(2.

【解析】试题分析:(1)由 ;(2)由已知可得方程只有一个解 只有一个解,又 ,设,则有关于的方程,然后对分类讨论得:实数的取值范围是.

试题解析:(1函数是偶函数,

恒成立,

,则.

2,函数的图象有且只有一个公共点,即方程只有一个解,由已知得

方程等价于

,则有关于的方程

,即,则需关于的方程只有一个大于的正数解,

恰好有一个大于的正解,

满足题意;

,即时,解得,不满足题意;

,即时,由,得

时,则需关于的方程只有一个小于的整数解,

解得满足题意;当时, 不满足题意,

综上所述,实数的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】将圆的一组等分点分别涂上红色或蓝色,从任意一点开始,按逆时针方向依次记录个点的颜色,称为该圆的一个阶段序,当且仅当两个阶色序对应位置上的颜色至少有一个不相同时,称为不同的阶色序.若某圆的任意两个阶段序均不相同,则称该圆为阶魅力圆.3阶魅力圆中最多可有的等分点个数为

A.4 B.6

C. 8 D.10

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正三棱柱中,,点的中点,点在线段上.

)当时,求证

)是否存在点,使二面角等于60°?若存在,求的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】阅读:

已知,求的最小值.

解法如下:

当且仅当,即时取到等号,

的最小值为.

应用上述解法,求解下列问题:

(1)已知,求的最小值;

(2)已知,求函数的最小值;

(3)已知正数

求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知全集U=R,集合A={x|-5<x<5},B={x|0≤x<7},:(1)AB;(2)AB;(3)A∪(UB);(4)B∩(UA);(5)(UA)∩(UB).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知三棱柱中,

(1)求证:

(2)若 ,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市居民自来水收费标准如下:每户每月用水不超过5吨时,每吨为元,当用水超过5吨时,超过部分每吨4元。某月甲、乙两户共交水费元,已知甲、乙两户该月用水量分别为吨。

(1)关于的函数。

(2)若甲、乙两户该月共交水费元,分别求甲、乙两户该月的用水量和水费。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数是奇函数,函数的定义域为.

1)求的值;

2)若上单调递减,根据单调性的定义求实数的取值范围;

3)在(2)的条件下,若函数在区间上有且仅有两个不同的零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着网络的发展,人们可以在网络上购物、玩游戏、聊天、导航等,所以人们对上网流量的需求越来越大.某电信运营商推出一款新的“流量包”套餐.为了调查不同年龄的人是否愿意选择此款“流量包”套餐,随机抽取50个用户,按年龄分组进行访谈,统计结果如右表.

年龄

访谈

人数

愿意

使用

1

[18,28)

4

4

2

[28,38)

9

9

3

[38,48)

16

15

4

[48,58)

15

12

5

[58,68)

6

2

(Ⅰ)若在第2、3、4组愿意选择此款“流量包”套餐的人中,用分层抽样的方法抽取12人,则各组应分别抽取多少人?

(Ⅱ)若从第5组的被调查者访谈人中随机选取2人进行追踪调查,求2人中至少有1人愿意选择此款“流量包”套餐的概率.

(Ⅲ)按以上统计数据填写下面2×2列联表,并判断以48岁为分界点,能否在犯错误不超过1%的前提下认为,是否愿意选择此款“流量包”套餐与人的年龄有关?

年龄不低于48岁的人数

年龄低于48岁的人数

合计

愿意使用的人数

不愿意使用的人数

合计

参考公式:,其中:n=a+b+c+d.

P(k2≥k0

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步练习册答案