精英家教网 > 高中数学 > 题目详情
在如图所示的几何体中,平行四边形ABCD的顶点都在以AC为直径的圆O上,AD=CD=DP=a,AP=CP=
2
a,DP∥AM,且AM=
1
2
DP,E,F分别为BP,CP的中点.
(I)证明:EF∥平面ADP;
(II)求三棱锥M-ABP的体积.
分析:(Ⅰ)要证明:EF∥平面PAD,根据线面平行的判定定理可知,只需证明EF∥AD即可.
(Ⅱ)求三棱锥M-ABP的体积V,转化为求三棱锥P-ABM的体积.只需求出底面△ABM的面积,再求出P到底面的距离,即可.
解答:解:(I)证明:∵AC是圆O的直径,
∴∠ADC为直角,即CD⊥AD (1分)
∵AD=CD=a,∴平行四边形是ABCD正方形,∴BC∥AD   
在△PBC中,E,F分别是PB,
PC的中点,∴EF∥BC.
又BC∥AD,∴EF∥AD,
又∵AD?平面PAD,EF?平面PAD,
∴EF∥平面PAD;
(II)∵AD2+DP2=AP2,∴∠ADP是直角,∴DP⊥AD,(7分)
同理DP⊥CD
∴DP⊥平面 ABCD (8分)
∵DP∥AM,∴AM⊥平面ABCD,(9分)
∴AM⊥AD,又∴AB⊥AD
∴AD⊥平面ABM,(10分)
∴点D到平面ABM的距离AD,即为点P到平面ABM的距离,
在直角三角形ABM中,S△ABM=
1
2
AB•AM=
1
4
a2
 (11分)
∴VP-ABM=
1
3
 S△ABM•AD=
1
3
×
1
4
a2•a=
1
12
a
3
   (13分)
∴V M-ABP=V P-ABM=
1
12
a
3
.(14分)
点评:本题考查证明线面平行的方法,三棱锥的体积公式,根据线面平行的判定定理是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在如图所示的几何体中,四边形ABCD、ADEF、ABGF均为全等的直角梯形,且BC∥AD,AB=AD=2BC.
(Ⅰ)求证:CE∥平面ABGF;
(Ⅱ)求二面角G-CE-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•朝阳区一模)在如图所示的几何体中,四边形ABCD为平行四边形,∠ABD=90°,EB⊥平面ABCD,EF∥AB,AB=2,EF=1,BC=
13
,且M是BD的中点.
(Ⅰ)求证:EM∥平面ADF;
(Ⅱ)在EB上是否存在一点P,使得∠CPD最大?若存在,请求出∠CPD的正切值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在如图所示的几何体中,面CDEF为正方形,面ABCD为等腰梯形,AB∥CD,AB=2BC,∠ABC=60°,AC⊥FB.
(Ⅰ)求证:AC⊥平面FBC;
(Ⅱ)线段ED上是否存在点Q,使平面EAC⊥平面QBC?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网在如图所示的几何体中,EA⊥平面ABC,DB⊥平面ABC,AC⊥BC,AC=BC=BD=2AE=2,M是AB的中点. 
(1)求证:CM⊥平面ABDE;
(2)求几何体的体积.

查看答案和解析>>

同步练习册答案