【题目】如图,在三棱锥ABCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N分别为AD,BC的中点,则异面直线AN,CM所成的角的余弦值是( )
A.
B.﹣
C.﹣
D.
【答案】A
【解析】解:由题意:三棱锥ABCD中,连结ND,取ND 的中点为E,连结ME,
则ME∥AN,异面直线AN,CM所成的角就是∠EMC.
∵AB=AC=BD=CD=3,AD=BC=2,点M,N分别为AD,BC的中点,
∴AN= ,ME=EN= ,MC=2 ,
又∵EN⊥NC,∴EC= = ;
cos∠EMC= = = .
∴异面直线AN,CM所成的角的余弦值是 .
故选A.
【考点精析】根据题目的已知条件,利用异面直线及其所成的角的相关知识可以得到问题的答案,需要掌握异面直线所成角的求法:1、平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;2、补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系.
科目:高中数学 来源: 题型:
【题目】已知命题p:方程x2+mx+1=0有两个不相等的实根;
命题q:函数f(x)=lg[x2﹣2(m+1)x+m(m+1)]的定义域为R,
若“p∨q”为真,“p∧q”为假,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=xlnx.
(1)求f(x)的单调区间和极值;
(2)设A(x1 , f(x1)),B(x2 , f(x2)),且x1≠x2 , 证明: <f′( ).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于区间,若函数同时满足:①在上是单调函数;②函数, 的值域是,则称区间为函数的“保值”区间.
()求函数的所有“保值”区间.
()函数是否存在“保值”区间?若存在,求出的取值范围;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=aln(x+1)﹣x2在区间(0,1)内任取两个实数p,q,且p≠q,不等式 恒成立,则实数a的取值范围为( )
A.[15,+∞)
B.
C.[1,+∞)
D.[6,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知△ABC的两顶点坐标A(﹣1,0),B(1,0),圆E是△ABC的内切圆,在边AC,BC,AB上的切点分别为P,Q,R,|CP|=1(从圆外一点到圆的两条切线段长相等),动点C的轨迹为曲线M.
(I)求曲线M的方程;
(Ⅱ)设直线BC与曲线M的另一交点为D,当点A在以线段CD为直径的圆上时,求直线BC的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com