精英家教网 > 高中数学 > 题目详情

【题目】关于函数,有以下三个结论:

①函数恒有两个零点,且两个零点之积为

②函数的极值点不可能是

③函数必有最小值.

其中正确结论的个数有(

A.0B.1C.2D.3

【答案】D

【解析】

把函数的零点转化为函数的零点,即可判断①;求得后代入,根据是否为0即可判断②;设的两个实数根为,结合①可得当时,,再证明即可判断③;即可得解.

由题意函数的零点即为函数的零点,

,则,所以方程必有两个不等实根,设

由韦达定理可得,故①正确;

时,,故不可能是函数的极值点,故②正确;

的两个实数根为

则当时,,函数单调递增,

时,,函数单调递减,所以为函数极小值;

由①知,当时,函数,所以当时,

,所以,所以

所以为函数的最小值,故③正确.

故选:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若上恒成立,求的取值范围,并证明:对任意的,都有

2)设.讨论方程实数根的个数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两人各进行次射击,甲每次击中目标的概率为,乙每次击中目标的概率

(Ⅰ)记甲击中目标的次数为,求的概率分布及数学期望;

(Ⅱ)求甲恰好比乙多击中目标次的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知条件P①是奇函数;②值域为R;③函数图象经过第四象限。则下列函数中满足条件Р的是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是正方形,底面,点E的中点,点F在边上移动.

(Ⅰ)若F中点,求证:平面

(Ⅱ)求证:

(Ⅲ)若二面角的余弦值等于,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,函数

⑴当时,求函数的表达式;

⑵若,函数上的最小值是2 ,求的值;

⑶在⑵的条件下,求直线与函数的图象所围成图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的左、右焦点分别是是其左右顶点,点是椭圆上任一点,且的周长为6,若面积的最大值为.

(1)求椭圆的方程;

(2)若过点且斜率不为0的直线交椭圆两个不同点,证明:直线的交点在一条定直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现抛掷两枚骰子,记事件为“朝上的2个数之和为偶数”,事件为“朝上的2个数均为偶数”,则( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,直线将矩形纸分为两个直角梯形,将梯形沿边翻折,如图2,在翻折的过程中(平面和平面不重合),下面说法正确的是

图1 图2

A.存在某一位置,使得平面

B.存在某一位置,使得平面

C.在翻折的过程中,平面恒成立

D.在翻折的过程中,平面恒成立

查看答案和解析>>

同步练习册答案