分析 (Ⅰ)设E为BC的中点,连接A1E,AE,DE,由题意得A1E⊥平面ABC,从而AE⊥平面A1BC,推导出四边形A1AED为平行四边形,由此能证明A1D⊥平面A1BC.
(Ⅱ)由${V}_{{A}_{1}-B{B}_{1}{C}_{1}C}=\frac{2}{3}{V}_{{{A}_{1}{B}_{1}{C}_{1}-ABC}^{\;}}$,能求出四棱锥A1-BB1C1C的体积.
解答 (本题满分12分)
证明:(Ⅰ)设E为BC的中点,连接A1E,AE,DE,
由题意得A1E⊥平面ABC
所以A1E⊥AE,因为AB=AC,所以AE⊥BC
故AE⊥平面A1BC…(3分)
由D,E分别为B1C1,BC的中点,
得DE∥B1B且DE=B1B,从而DE∥A1A,DE=A1A,
所以四边形A1AED为平行四边形
故A1D∥AE,又因为AE⊥平面A1BC
所以A1D⊥平面A1BC…(6分)
解:(Ⅱ)由$AE=EB=\sqrt{2},∠{A_1}EA=90°,{A_1}A=4$,
得${A_1}E=\sqrt{14}$,S△ABC=2,(9分)
由${V_{{A_1}-ABC}}=\frac{1}{3}|{{A_1}E}|•{S_{△ABC}},{V_{ABC-{A_1}{B_1}{C_1}}}=|{{A_1}E}|•{S_{△ABC}}$,
得${V_{{A_1}-B{B_1}{C_1}C}}=\frac{2}{3}{V_{{A_1}{B_1}{C_1}-ABC}}=\frac{2}{3}×2×\sqrt{14}=\frac{{4\sqrt{14}}}{3}$,
∴四棱锥A1-BB1C1C的体积为$\frac{4\sqrt{14}}{3}$.(12分)
点评 本题考查线面垂直的证明,考查四棱锥的体积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.
科目:高中数学 来源: 题型:选择题
A. | $\frac{13}{15}$ | B. | $\frac{2}{81}$ | C. | $\frac{13}{243}$ | D. | $\frac{80}{243}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{2}$ | B. | $-\frac{1}{2}$ | C. | $-\frac{{\sqrt{3}}}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | f(-n)<f(n-1)<f(n+1) | B. | f(n-1)<f(-n)<f(n+1) | C. | f(n+1)<f(-n)<f(n-1) | D. | f(n+1)<f(n-1)<f(-n) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com