精英家教网 > 高中数学 > 题目详情

【题目】如图,在平面直角坐标系中,已知是椭圆上的一点,从原点向圆作两条切线,分别交椭圆于点

(1)若点在第一象限,且直线互相垂直,求圆的方程;

(2)若直线的斜率存在,并记为,求的值;

【答案】(1);(2).

【解析】

试题分析:本题主要考查椭圆的标准方程及其性质、直线与椭圆的位置关系、椭圆中的定值问题等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力. 第一问,利用圆的半径、直线与圆相切,得到,结合点在椭圆上,解出,从而得到圆的方程;第二问,由于直线与圆相切,圆心到直线的距离等于半径得到,再根据解出的值;

试题解析:1)由圆的方程知圆的半径,因为直线互相垂直,且和圆相切,所以,即

又点在椭圆上,所以

联立①②,解得

所以,所求圆的方程为

2)因为直线都与圆相切,所以

化简得

因为点在椭圆上,所以,即

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知是奇函数.

(1)求实数的值;

(2)求函数上的值域;

(3)令,求不等式的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,三点中恰有二点在椭圆上,且离心率为

(1)求椭圆的方程;

(2)设为椭圆上任一点, 为椭圆的左右顶点, 中点,求证:直线与直线它们的斜率之积为定值;

(3)若椭圆的右焦点为,过的直线与椭圆交于,求证:直线与直线斜率之和为定值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂生产部门随机抽测生产某种零件的工人的日加工零件数(单位:件),其中A车间13人,B车间12人,获得数据如下:

根据上述数据得到样本的频率分布表如下:

分组

频数

频率

[2530]

3

0.12

3035]

5

0.20

3540]

8

0.32

4045]

n1

f1

4550]

n2

f2

1)确定样本频率分布表中n1n2f1f2的值;

2)现从日加工零件数落在(4045]的工人中随机选取两个人,求这两个人中至少有一个来自B车间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求函数的单调区间;

(2)是否存在实数,使得至少有一个,使成立,若存在,求出实数的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线上一点到其焦点的距离为5,双曲线的左顶点为,若双曲线的一条渐近线与直线平行,则实数的值是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】01234这五个数字组成无重复数字的自然数.

(Ⅰ)在组成的三位数中,求所有偶数的个数;

(Ⅱ)在组成的三位数中,如果十位上的数字比百位上的数字和个位上的数字都小,则称这个数为“凹数”,如301423等都是“凹数”,试求“凹数”的个数;

(Ⅲ)在组成的五位数中,求恰有一个偶数数字夹在两个奇数数字之间的自然数的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|xa|-x(a>0).

(1)若a=3,解关于x的不等式f(x)<0;

(2)若对于任意的实数x,不等式f(x)-f(xa)<a2恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求不等式的解集;

(2)若对一切,均有成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案