精英家教网 > 高中数学 > 题目详情
已知平面直角坐标系中点F(1,0)和直线,动圆M过点F且与直线相切。
(1)求M的轨迹L的方程;
(2)过点F作斜率为1的直线交曲线L于A、B两点,求|AB|的值。
解:(1)设动圆M的圆心,则,     2分
化简得                                                  4分
(法二)由条件,动圆M的圆心的轨迹是以F为焦点,直线为准线的抛物线                                                              2分
为所求                                                  4分
(2)由条件,代入    得,       6分
(一)解得                           10分
                                 11分
|AB|的值为8                                                    12分
(二)设,则                          8分
由抛物线定义,                        10分
                            11分
|AB|的值为8                                              12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知点是直线上任意一点,以A、B为焦点的椭圆过点P.记椭圆离心率关于的函数为,那么下列结论正确的是 (  )
A.一一对应                B.函数无最小值,有最大值
C.函数是增函数            D.函数有最小值,无最大值

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知定直线l与平面a成60°角,点P是平面a内的一动点,且点p到直线l的距离为3,则动点P的轨迹是( )
A.圆B.椭圆的一部分C.抛物线的一部分D.椭圆

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)  
已知椭圆的离心率为,且过点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)垂直于坐标轴的直线与椭圆相交于两点,若以为直径的圆经过坐标原点.证明:圆的半径为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分) 设椭圆 C1)的一个顶点与抛物线 C2 的焦点重合,F1,F2 分别是椭圆的左、右焦点,离心率 ,过椭圆右焦点 F2 的直线  与椭圆 C 交于 M,N 两点.
(I)求椭圆C的方程;
(II)是否存在直线 ,使得 ,若存在,求出直线  的方程;若不存在,说明理由;
(III)若 AB 是椭圆 C 经过原点 O 的弦,MN//AB,求证: 为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知以原点为中心,F(,0)为右焦点的椭圆C,过点F垂直于轴的弦AB长为4.
(1).求椭圆C的标准方程.
(2).设M、N为椭圆C上的两动点,且,点P为椭圆C的右准线与轴的交点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)已知椭圆的长轴长为,离
心率
(1)求椭圆C的标准方程;
(2)若过点B(2,0)的直线(斜率不等于零)与椭圆C交于点E,F,且
求直线的方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的一个焦点为(0,2)则的值为:( )
A.2B.3C.5D.7

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分10分)设过点的直线与过点的直线相交于点M,
的斜率的乘积为定值,求点M的轨迹方程.

查看答案和解析>>

同步练习册答案