A. | $\frac{3}{2}\overrightarrow{AB}-\frac{7}{6}\overrightarrow{AC}$ | B. | $\frac{1}{2}\overrightarrow{AB}+\frac{1}{6}\overrightarrow{AC}$ | C. | $\frac{3}{2}\overrightarrow{AB}-\frac{5}{6}\overrightarrow{AC}$ | D. | $\frac{1}{2}\overrightarrow{AB}-\frac{5}{6}\overrightarrow{AC}$ |
分析 根据已知在△ABC中,$\overrightarrow{AE}=\frac{2}{3}\overrightarrow{AC}$,$\overrightarrow{BF}=-\frac{1}{2}\overrightarrow{BC}$,结合向量加减法的三角形法则,可得答案.
解答 解:∵在△ABC中,$\overrightarrow{AE}=\frac{2}{3}\overrightarrow{AC}$,$\overrightarrow{BF}=-\frac{1}{2}\overrightarrow{BC}$,
∴$\overrightarrow{EF}$=$\overrightarrow{AF}$-$\overrightarrow{AE}$=$\overrightarrow{AB}$+$\overrightarrow{BF}$-$\overrightarrow{AE}$=$\overrightarrow{AB}$$-\frac{1}{2}\overrightarrow{BC}$-$\frac{2}{3}\overrightarrow{AC}$=$\overrightarrow{AB}$$-\frac{1}{2}(\overrightarrow{AC}-\overrightarrow{AB})$-$\frac{2}{3}\overrightarrow{AC}$=$\frac{3}{2}\overrightarrow{AB}-\frac{7}{6}\overrightarrow{AC}$,
故选:A.
点评 本题考查的知识点是向量在几何中的应用,向量的加减运算的三角形法则,难度中档.
科目:高中数学 来源: 题型:选择题
A. | A∈l,A∈α,B∈α⇒l?α | |
B. | l?α,A∈l⇒A∉α | |
C. | A∈α,A∈β,B∈α,B∈β⇒α∩β=AB | |
D. | A,B,C∈α,A,B,C∈β且A,B,C不共线⇒α,β重合 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 4 | B. | 6 | C. | 10 | D. | 14 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com