精英家教网 > 高中数学 > 题目详情
18.已知$tanθ=\frac{3}{4}$,那么$tan(θ+\frac{π}{4})$等于(  )
A.-7B.$-\frac{1}{7}$C.7D.$\frac{1}{7}$

分析 由条件利用两角和的正切公式,求得$tan(θ+\frac{π}{4})$的值.

解答 解:∵已知$tanθ=\frac{3}{4}$,那么$tan(θ+\frac{π}{4})$=$\frac{tanθ+1}{1-tanθ}$=$\frac{1+\frac{3}{4}}{1-\frac{3}{4}}$=7,
故选:C.

点评 本题主要考查两角和的正切公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.按下列条件,把x2+y2-2rx=0(r>0)化为参数方程:
(1)以曲线上的点与圆心的连线和x轴正方向的夹角φ为参数;
(2)以曲线上的点与原点的连线和x轴正方向的夹角θ为参数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知集合A={x|x2-2x-3≤0},B={x|log2(x2-x)>1}则A∩B=(  )
A.(2,3)B.(2,3]C.(-3,-2)D.[-3,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知f(x)在x0处可导,则$\underset{lim}{h→0}\frac{f({x}_{0}+h)-f({x}_{0})}{2h}$等于(  )
A.$\frac{1}{2}f′({x}_{0})$B.f′(x0C.2f′(x0D.4f′(x0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知斜三棱柱ABC-A1B1C1的底面是直角三角形,∠ACB=90°,侧棱与底面成60°角,点B1在底面上的射影D为BC的中点,BC=2,二面角A-BB1-C为30°(如图).
(1)求证:平面BCC1B1⊥平面ABC;
(2)求证:AC⊥面BCC1B1
(3)求多面体A-BCC1B1的体积V;
(4)求AB1与平面ACC1A1所成角的正切.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设a>0且a≠1,函数f(x)=loga$\frac{x-3}{x+3}$,g(x)=1+loga(x-1),两函数的定义域分别为集合A、B,若将A∩B记作区间D.
(1)试求函数f(x)在D上的单调性;
(2)若[m,n]⊆D,函数f(x)在[m,n]上的值域恰好为[g(n),g(m)],求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知点p为圆F1:x2+(y-$\sqrt{2}$)2=12上任一点,F2(0,-$\sqrt{2}$),且线段PF2垂直平分线交线段PF1于点M,
(1)求点M的轨迹曲线C的方程;
(2)直线l过点F1与曲线C交于A、B两点,在x轴上是否存在点Q,使得△ABQ为等边三角形,若存在求出所有满足条件的点Q坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知等比数列{an}的前n项和为Sn,a1=1,S6=9S3
(Ⅰ)求{an}的通项公式;
(Ⅱ)设bn=1+log2an,求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知直线l的参数方程为$\left\{\begin{array}{l}{x=1+tcosα}\\{y=tsinα}\end{array}\right.$(t为参数,α=$\frac{π}{4}$),以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相同的长度单位,建立极坐标系.曲线C的极坐标方程为ρsin2θ=4cosθ.
(1)求曲线C的直角坐标方程:
(2)设直线1与曲线C相交于A、B两点.求|AB|.

查看答案和解析>>

同步练习册答案