精英家教网 > 高中数学 > 题目详情
设f(x)=x2-2ax+2,当x∈[-1,+∞)时,f(x)≥a恒成立,求a的取值范围.
分析:区分图象的对称轴与区间[-1,+∞)的关系,根据二次函数在对称轴两边的单调性,求最小值即可.
解答:解:f(x)=x2-2ax+2=(x-a)2+2-a2
f(x)图象的对称轴为x=a
为使f(x)≥a在[-1,+∞)上恒成立,
只需f(x)在[-1,?+∞)上的最小值比a大或等于a即可
∴(1)a≤-1时,f(-1)最小,解,解得-3≤a≤-1
  (2)a≥-1时,f(a)最小,解
a≥-1
f(a)=2-a2≥a

解得-1≤a≤1
综上所述-3≤a≤1
点评:本题考查二次函数在给定区间上的恒成立问题,关键是讨论对称轴与区间的关系,转化为对称轴左右单调性相反,从而确定函数最值,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

15、设f(x)=x2+2|x|,对于实数x1,x2,给出下列条件:①x1>x2,②x12>x22,③x1>|x2|;其中能使f(x1)>f(x2)恒成立的是
②③
(写出所有答案)

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=x2-2|x|+3(-3≤x≤3)
(1)证明f(x)是偶函数;
(2)指出函数f(x)的单调增区间;
(3)求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x),若存在x0∈R,使得f(x0)=x0,则称x0为函数f(x)的不动点,
(1)设f(x)=x2-2,求函数f(x)的不动点;
(2)设f(x)=ax2+bx-b,若对任意实数b,函数f(x)都有两个相异的不动点,求实数a的取值范围;
(3)若奇函数f(x)(x∈R)存在K个不动点,求证:K为奇数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设f(x)=x2-2|x|+3(-3≤x≤3)
(1)证明f(x)是偶函数;
(2)指出函数f(x)的单调增区间;
(3)求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

对于函数f(x),若存在x0∈R,使得f(x0)=x0,则称x0为函数f(x)的不动点,
(1)设f(x)=x2-2,求函数f(x)的不动点;
(2)设f(x)=ax2+bx-b,若对任意实数b,函数f(x)都有两个相异的不动点,求实数a的取值范围;
(3)若奇函数f(x)(x∈R)存在K个不动点,求证:K为奇数.

查看答案和解析>>

同步练习册答案