精英家教网 > 高中数学 > 题目详情

【题目】已知函数.(其中为自然对数的底数)

(1)若恒成立,求的最大值;

(2)设,若存在唯一的零点,且对满足条件的不等式恒成立,求实数的取值集合.

【答案】(1);(2)

【解析】

1)就三种情况利用导数讨论的单调性及其相应的最小值后可得:时,成立,时,成立,对后一种情况构建新函数,利用导数可求的最大值即可.

2)求出,它是一个减函数且值域,故存在唯一的零点,再由题设条件可以得到,用表示后可把不等式化为,构建新函数,就两类情况利用导数讨论函数的单调性后可得实数的取值,注意后者的进一步讨论以的大小为分类标准.

(1)

时,上单调递增,取

时,矛盾;

时,

只要,即,此时

时,令

所以单调递增,在单调递减,

所以,即

此时

上为增函数;

上为减函数.

所以,所以,故的最大值为

(2)单调递减且的值域为

的唯一的零点为,则

所以

恒成立,则

上恒成立.

上为增函数,注意到,知当时,,矛盾;

时,为增函数,

,则当时,,,为减函数,

所以时,总有,矛盾;

,则当时,,,为增函数,

所以时,总有,矛盾;

所以,此时当时,为增函数,,

时,为减函数,而

所以有唯一的零点.

综上,的取值集合为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在棱长为1的正方体中,点关于平面的对称点为,则与平面所成角的正切值为

A. B. C. D. 2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 为自然对数的底数),且曲线在点处的切线平行于轴.

(1)求的值;

(2)求函数的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我们在求高次方程或超越方程的近似解时常用二分法求解,在实际生活中还有三分法.比如借助天平鉴别假币.有三枚形状大小完全相同的硬币,其中有一假币(质量较轻),把两枚硬币放在天平的两端,若天平平衡,则剩余一枚为假币,若天平不平衡,较轻的一端放的硬币为假币.现有 27 枚这样的硬币,其中有一枚是假币(质量较轻),如果只有一台天平,则一定能找到这枚假币所需要使用天平的最少次数为( )

A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知分别为三个内角的对边,向量.

(1)求角的大小;

(2)若,且面积为,求边的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为;直线的参数方程为为参数),直线与曲线分别交于两点.

(1)写出曲线的直角坐标方程和直线的普通方程;

(2)若点的极坐标为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在新中国成立70周年国庆阅兵庆典中,众多群众在脸上贴着一颗红心,以此表达对祖国的热爱之情,在数学中,有多种方程都可以表示心型曲线,其中有著名的笛卡尔心型曲线,如图,在直角坐标系中,以原点O为极点,x轴正半轴为极轴建立极坐标系.图中的曲线就是笛卡尔心型曲线,其极坐标方程为),M为该曲线上的任意一点.

1)当时,求M点的极坐标;

2)将射线OM绕原点O逆时针旋转与该曲线相交于点N,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】祖暅是南北朝时代的伟大科学家,公元五世纪末提出体积计算原理,即祖暅原理:“幂势既同,则积不容异”.意思是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任何一个平面所截,如果截面面积恒相等,那么这两个几何体的体积一定相等.设AB为两个同高的几何体,AB的体积不相等,AB在等高处的截面积不恒相等.根据祖暅原理可知,pq的(  )

A. 充分不必要条件 B. 必要不充分条件

C. 充要条件 D. 既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中为正实数.

1)若的图象总在函数的图象的下方,求实数的取值范围;

2)设,证明:对任意,都有.

查看答案和解析>>

同步练习册答案