(1)求f(x)的单调区间;
(2)讨论f(x)的极值.
所以f(-1)=2是极大值,f(1)=-2是极小值.
(2)曲线方程为y=x3-3x,点A(0,16)不在曲线上.
设切点为M(x0,y0),则点M的坐标满足y0=x03-3x0.
因f′(x0)=3(x02-1),故切线的方程为y-y0=3(x02-1)(x-x0).
注意到点A(0,16)在切线上,有16-(x03-3x0)=3(x02-1)(0-x0),
化简得x03=-8,解得x0=-2.
所以切点为M(-2,-2),
切线方程为9x-y+16=0.
解:由已知得f′(x)=6x[x-(a-1)],
令f′(x)=0,解得x1=0,x2=a-1.
(1)当a=1时,f′(x)=6x2,f(x)在(-∞,+∞)上递增.
当a>1时,f′(x)=6x[x-(a-1)].
f′(x)、f(x)随x的变化情况如下表:
x | (-∞,0) | 0 | (0,a-1) | a-1 | (a-1,+∞) |
f′(x) | + | 0 | - | 0 | + |
f(x) | 增 | 极大值 | 减 | 极小值 | 增 |
从上表可知,函数f(x)在(-∞,0)上单调递增;
在(0,a-1)上单调递减;在(a-1,+∞)上单调递增.
(2)由(1)知,当a=1时,函数f(x)没有极值.
当a>1时,函数f(x)在x=0处取得极大值1,在x=a-1处取得极小值1-(a-1)3.
科目:高中数学 来源: 题型:
2x |
|x|+1 |
查看答案和解析>>
科目:高中数学 来源: 题型:
| ||
x+2 |
an |
A0A1 |
A1A2 |
An-1An |
an |
i |
i |
lim |
n→∞ |
3 |
4 |
2 |
3 |
4 |
2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com