【题目】如图,在正方体ABCD﹣A1B1C1D1中,E为D1D的中点,AC与BD的交点为O.
(1)求证:EO⊥平面AB1C;
(2)在由正方体的顶点确定的平面中,是否存在与平面AB1C平行的平面?证明你的结论
【答案】(1)见解析(2)存在平面A1C1D与平面AB1C平行.见解析
【解析】
(1)根据正方体的几何特征,易证 AC⊥平面BDD1B1,则AC⊥EO.在矩形BDD1B1中,利用勾股定理,有,即B1O⊥OE,再利用线面垂直的判定定理证明.
(2)存在平面A1C1D与平面AB1C平行.在正方体中,易得 A1C1∥平面AB1C,A1D∥平面AB1C,利用面面平行的判定定理证明.
(1)如图所示:连结B1D1,
在正方体ABCD﹣A1B1C1D1中,AC⊥BD,BB1⊥AC,
又BB1平面BDD1B1,BD平面BDD1B1,且BB1∩BD=B,
所以AC⊥平面BDD1B1,
连结B1O,B1E,
又EO平面BDD1B1,则AC⊥EO.
在矩形BDD1B1中,设DD1=1,则,
所以,
则,即B1O⊥OE.
又B1O平面AB1C,EO平面AB1C,且B1O∩EO=O,
所以OE⊥平面AB1C;
(2)存在平面A1C1D与平面AB1C平行.
证明如下:在正方体ABCD﹣A1B1C1D1中,A1C1∥AC,A1D∥B1C,
又AC平面AB1C,B1C平面AB1C,A1C1平面AB1C,A1D平面AB1C,
所以A1C1∥平面AB1C,A1D∥平面AB1C,
又A1C1平面A1C1D,A1D平面A1C1D,且A1C1∩A1D=A1,
所以平面A1C1D∥平面AB1C.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线C的参数方程为(为参数).以原点为极点,x轴的非负半轴为极轴,建立极坐标系.
(1)求曲线C的极坐标方程;
(2)直线(t为参数)与曲线C交于A,B两点,求最大时,直线l的直角坐标方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解某品种一批树苗生长情况,在该批树苗中随机抽取了容量为120的样本,测量树苗高度(单位:),经统计,其高度均在区间内,将其按分成6组,制成如图所示的频率分布直方图.其中高度为及以上的树苗为优质树苗.
试验区 | 试验区 | 合计 | |
优质树苗 | 20 | ||
非优质树苗 | 60 | ||
合计 |
(1)求图中的值,并估计这批树苗高度的中位数和平均数(同一组数据用该组区间的中点值作代表);
(2)已知所抽取的这120棵树苗来自于,两个试验区,部分数据如上列联表:将列联表补充完整,并判断是否有的把握认为优质树苗与,两个试验区有关系,并说明理由.
参考数据:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参考公式:,其中.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某客户考察了一款热销的净水器,使用寿命为十年,过滤由核心部件滤芯来实现.在使用过程中,滤芯需要不定期更换,其中滤芯每个200元.如图是根据100台该款净水器在十年使用期内更换的滤芯的件数制成的柱状图.(以100台净水器更换滤芯的频率代替1台净水器更换滤芯发生的概率)
(1)估计一台净水器在使用期内更换滤芯的件数的众数和中位数.
(2)估计一台净水器在使用期内更换滤芯的件数大于10的概率.
(3)已知上述100台净水器在购机的同时购买滤芯享受5折优惠(使用过程中如需再购买无优惠),假设每台净水器在购机的同时购买滤芯10个,这100台净水器在使用期内,更换滤芯的件数记为a,所需费用记为y,补全下表,估计这100台净水器在使用期内购买滤芯所需总费用的平均数.
100台该款净水器在试用期内更换滤芯的件数a | 9 | 10 | 11 | 12 |
频数 | ||||
费用y |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在全球关注的抗击“新冠肺炎”中,某跨国科研中心的一个团队,研制了甲、乙两种治疗“新冠肺炎”新药,希望知道哪种新药更有效,为此进行动物试验,试验方案如下:
第一种:选取共10只患病白鼠,服用甲药后某项指标分别为:;
第二种:选取共10只患病白鼠,服用乙药后某项指标分别为:;
该团队判定患病白鼠服药后这项指标不低于85的确认为药物有效,否则确认为药物无效.
(1)已知第一种试验方案的10个数据的平均数为89,求这组数据的方差;
(2)现需要从已服用乙药的10只白鼠中随机抽取7只,记其中服药有效的只数为,求的分布列与期望;
(3)该团队的另一实验室有1000只白鼠,其中900只为正常白鼠,100只为患病白鼠,每用新研制的甲药给所有患病白鼠服用一次,患病白鼠中有变为正常白鼠,但正常白鼠仍有变为患病白鼠,假设实验室的所有白鼠都活着且数量不变,且记服用次甲药后此实验室正常白鼠的只数为.
(i)求并写出与的关系式;
(ii)要使服用甲药两次后,该实验室正常白鼠至少有950只,求最大的正整数的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,椭圆:的离心率为,左、右顶点分别为、,线段的长为4.点在椭圆上且位于第一象限,过点,分别作,,直线,交于点.
(1)若点的横坐标为-1,求点的坐标;
(2)直线与椭圆的另一交点为,且,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,为等腰直角三角形,,D为AC上一点,将沿BD折起,得到三棱锥,且使得在底面BCD的投影E在线段BC上,连接AE.
(1)证明:;
(2)若,求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某次考试,班主任从全班同学中随机抽取一个容量为8的样本,他们的数学物理分数对应如下表:
学生编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
数学分数 | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 |
物理分数 | 72 | 77 | 80 | 84 | 88 | 90 | 93 | 95 |
绘出散点图如下:
根据以上信息,判断下列结论:
①根据此散点图,可以判断数学成绩与物理成绩具有线性相关关系;
②根据此散点图,可以判断数学成绩与物理成绩具有一次函数关系;
③甲同学数学考了80分,那么,他的物理成绩一定比数学只考了60分的乙同学的物理成绩要高.
其中正确的个数为( ).
A.0B.3C.2D.1
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com