精英家教网 > 高中数学 > 题目详情

已知函数f(x)=x2+2x+alnxa∈R.
①当a=-4时,求f(x)的最小值;
②若函数f(x)在区间(0,1)上为单调函数,求实数a的取值范围;
③当t≥1时,不等式f(2t-1)≥2f(t)-3恒成立,求实数a的取值范围.

解:①∵f(x)=x2+2x-4lnx(x>0)
(2分)
当x>1时,f'(x)>0,当0<x<1时,f'(x)<0
∴f(x)在(0,1)上单调减,在(1,+∞)上单调增
∴f(x)min=f(1)=3(4分)
(5分)
若f(x)在(0,1)上单调增,则2x2+2x+a≥0在x∈(0,1)上恒成立?a≥-2x2-2x恒成立
令u=-2x2-2x,x∈(0,1),则,umax=0
∴a≥0(7分)
若f(x)在(0,1)上单调减,则2x2+2x+a≤0在x∈(0,1)上恒成立?a≤[-2x2-2x]min=-4
综上,a的取值范围是:(-∞,-4]∪[0,+∞)(9分)
③(2t-1)2+2(2t-1)+aln(2t-1)≥2t2+4t+2alnt-3恒成立a[ln(2t-1)-2lnt]≥-2t2+4t-2?a[ln(2t-1)-lnt2]≥2[(2t-1)-t2](10分)
当t=1时,不等式显然成立
当t>1时,在t>1时恒成立(11分)
,即求u的最小值
设A(t2,lnt2),B(2t-1,ln(2t-1)),
且A、B两点在y=lnx的图象上,又∵t2>1,2t-1>1,故0<kAB<y'|x=1=1
,故a≤2
即实数a的取值范围为(-∞,2](14分)
分析:①先求出其导函数,得到其在定义域上的单调性即可求出f(x)的最小值;
②先求出其导函数,把f(x)在(0,1)上单调增转化为2x2+2x+a≥0在x∈(0,1)上恒成立?a≥-2x2-2x恒成立,再利用二次函数在固定区间上求最值的方法求出-2x2-2x的最大值即可求实数a的取值范围;
③根据(2t-1)2+2(2t-1)+aln(2t-1)≥2t2+4t+2alnt-3恒成立则a[ln(2t-1)-2lnt]≥-2t2+4t-2?a[ln(2t-1)-lnt2]≥2[(2t-1)-t2再讨论他的取值范围
点评:该题考查函数的求导,利用导数求函数的单调性,利用恒等式求函数的最值问题,注意不要掉了自变量的取值范围.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案