精英家教网 > 高中数学 > 题目详情
正四面体ABCD中,E为AD的中点,则异面直线AB与CE所成角的余弦值等于
 
考点:异面直线及其所成的角
专题:空间角
分析:取BD的中点F,连接EF,CF,则EF与CE所成的角即为异面直线AB与CE所成角,由此利用余弦定理能求出异面直线AB与CE所成角的余弦值.
解答: 解:如图所示,取BD的中点F,连接EF,CF,
则EF与CE所成的角即为异面直线AB与CE所成角,
设正四面体ABCD的棱长为2a,(a>0),
则EF=
1
2
AB=a,CE=CF=2a•sin60°=
3
a,
在△CEF中,
cos∠CEF=
CE2+EF2-CF2
2×CE×EF
=
(
3
a)2+a2-(
3
a)2
3
a×a
=
3
6

故答案为:
3
6
点评:本题考查异面直线所成角的余弦值的求法,是中档题,解题时要认真审题,注意余弦定理的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在等差数列{an}中,d=2,an=11,Sn=35,n∈N+,求a1和n.

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=
lnx
x
,a>b>e,则f(a)与f(b)大小关系为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在长方体ABCD-A1B1C1D1中,AB=AA1=2,AD=1,E为CC1的中点,则异面直线BC1与AE所成角的余弦值为(  )
A、
10
10
B、
10
3
C、
30
10
D、
5
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
OA
OB
是两个单位向量,且
OA
OB
=0.若点C在∠AOB内,且∠AOC=30°,
OC
=m
OA
+n
OB
(m,n∈R),则
m
n
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex-x-m(m∈R).
(1)当x>0时,f(x)>0恒成立,求m的取值范围;
(2)当m=-1时,证明:(
x-lnx
ex
)f(x)>1-
1
e2

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=cos(2x-
π
3
)+2sin(x-
π
4
)sin(x+
π
4
)图象的对称轴方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

平行六面体ABCD-A1B1C1D1中,设
AC1
=x
AB
+2y
BC
+3z
CC1
,则x+y+z=(  )
A、1
B、
11
6
C、
5
6
D、
7
6

查看答案和解析>>

科目:高中数学 来源: 题型:

以M为圆心半径为2.5的圆外接于△ABC,且5
MA
+13
MC
+12
MB
=
0
,则两个面积比
S△BCM
S△ABM
=
 

查看答案和解析>>

同步练习册答案