精英家教网 > 高中数学 > 题目详情

【题目】某地区2020年清明节前后3天每天下雨的概率为60%,通过模拟实验的方法来计算该地区这3天中恰好有2天下雨的概率:用随机数,且)表示是否下雨:当时表示该地区下雨,当时,表示该地区不下雨,从随机数表中随机取得20组数如下

332 714 740 945 593 468 491 272 073 445

992 772 951 431 169 332 435 027 898 719

1)求出的值,并根据上述数表求出该地区清明节前后3天中恰好有2天下雨的概率;

2)从2011年开始到2019年该地区清明节当天降雨量(单位:)如下表:(其中降雨量为0表示没有下雨).

时间

2011

2012

2013

2014

2015

2016

2017

2018

2019

年份

1

2

3

4

5

6

7

8

9

降雨量

29

28

26

27

25

23

24

22

21

经研究表明:从2011年开始至2020年, 该地区清明节有降雨的年份的降雨量与年份成线性回归,求回归直线,并计算如果该地区2020年()清明节有降雨的话,降雨量为多少?(精确到0.01

参考公式:.

参考数据:

.

【答案】1,概率为;(2)回归直线方程为:2020年清明节有降雨的话,降雨量约为

【解析】

1)根据每天下雨概率可求得,在所给20组数确定表示3天中恰有2天下雨的组数,然后计算概率;

2)计算,根据所给数据求出回归直线方程中的系数,得回归直线方程,令可得2020年的预估值.

1)由,即表示下雨,表示不下雨,

所给20组数中有71474094559349127207395116902710组表示3天中恰有两天下雨,∴所求概率为.

2)由所给数据得

∴回归直线方程为:

时,

2020年清明节有降雨的话,降雨量约为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】现有行数表如下:

第一行:

第二行:

第三行:

…… …… ……

行:

m行:

按照上述方式从第一行写到第m行(写下的第n个数记作)得到有穷数列,其前n项和为,若存在,则的最小值为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若存在极小值,求实数的取值范围;

(2)设的极小值点,且,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着手机的发展,“微信”逐渐成为人们交流的一种形式.某机构对“使用微信交流”的态度进行调查,随机抽取了50人,他们年龄的频数分布及对“使用微信交流”赞成人数如下表.

年龄

(单位:岁)

[15,25)

[25,35)

[35,45)

[45,55)

[55,65)

[65,75]

频数

5

10

15

10

5

5

赞成人数

5

10

12

7

2

1

(1)若以“年龄45岁为分界点”,由以上统计数据完成下面2×2列联表,并判断是否有99%的把握认为“使用微信交流”的态度与人的年龄有关;

年龄不低于45岁的人数

年龄低于45岁的人数

合计

赞成

不赞成

合计

(2)若从年龄在[55,65)的被调查人中随机选取2人进行追踪调查,求2人中至少有1人不赞成“使用微信交流”的概率.

参考数据:

P(K2k0)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

K2,其中nabcd.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,直线的极坐标方程为.

1)求的普通方程和的直角坐标方程;

2)直线轴的交点为,经过点的直线与曲线交于两点,若,求直线的倾斜角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆与直线相切,且与圆外切.

1)求动圆圆心轨迹的方程;

2)已知过点的直线:与曲线交于两点,是否存在常数,使得恒为定值?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列满足

(1)若,求证:数列为等比数列;

(2)在(1)的条件下,对于正整数,若这三项经适当排序后能构成等差数列,求符合条件的数组

(3)若的前项和,求不超过的最大整数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为F,过焦点F的直线交抛物线于A,B两点,设AB的中点为M,A,B,M在准线上的射影分别为C,D,N.

1)求直线FN与直线AB的夹角的大小;

2)求证:点B,O,C三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国古代数学经典《九章算术》系统地总结了战国、秦、汉时期的数学成就,书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的三棱锥称之为鳖臑,如图为一个阳马与一个鳖臑的组合体,已知平面,四边形为正方形,,若鳖臑的外接球的体积为,则阳马的外接球的表面积等于______.

查看答案和解析>>

同步练习册答案