精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
如图,椭圆经过点,离心率

(l)求椭圆的方程;
(2)设直线与椭圆交于两点,点关于轴的对称点为不重合),则直线轴是否交于一个定点?若是,请写出定点坐标,并证明你的结论;若不是,请说明理由。
(1)(2)直线轴交于定点
(1)依题意可得,解得
所以,椭圆的方程是……………………4分
(2)由
,即 ……………………………6分

.且.…………………7分
经过点的直线方程为
,则………………9分

时,

这说明,直线轴交于定点…………………………………………12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(12分) 已知椭圆C:,其相应于焦点的准线方程为(Ⅰ)求椭圆C的方程;(Ⅱ)已知过点倾斜角为的直线分别交椭圆C于A、B两点,求证:(Ⅲ)过点作两条互相垂直的直线分别交椭圆C于A、B和D、E,求的最小值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

若给定椭圆C:ax2+by2=1(a>0,b>0,ab)和点N(x0,y0),则称直线l:ax0x+by0y=1为椭圆C的“伴随直线”,
(1)若N(x0,y0)在椭圆C上,判断椭圆C与它的“伴随直线”的位置关系(当直线与椭圆的交点个数为0个、1个、2个时,分别称直线与椭圆相离、相切、相交),并说明理由;
(2)命题:“若点N(x0,y0)在椭圆C的外部,则直线l与椭圆C必相交.”写出这个命题的逆命题,判断此逆命题的真假,说明理由;
(3)若N(x0,y0)在椭圆C的内部,过N点任意作一条直线,交椭圆C于A、B,交l于M点(异于A、B),设,问是否为定值?说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
      椭圆短轴的左右两个端点分别为A,B,直线与x轴、y轴分别交于两点E,F,交椭圆于两点C,D。
(I)若,求直线的方程;
(II)设直线AD,CB的斜率分别为,若,求k的值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是椭圆的两个焦点,是椭圆上的任意一点,则的最大值是                              (     )
、9        、16            

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

分别是椭圆的左、右焦点.
(Ⅰ)若P是该椭圆上的一个动点,求的最大值和最小值;
(Ⅱ)是否存在过点A(5,0)的直线l与椭圆交于不同的两点C、D,使得|F2C|=|F2D|?若存在,求直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C的中心在原点,焦点在轴上,左右焦点分别为,且,点(1,)在椭圆C上.
(1)求椭圆C的方程;
(2)过的直线与椭圆相交于两点,且的面积为,求以为圆心且与直线相切的圆的方程

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过椭圆的右焦点且垂直于轴的直线与椭圆交于两点,以为直径的圆恰好过左焦点,则椭圆的离心率等于              

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如果为椭圆的左焦点,分别为椭圆的右顶点和上顶点,为椭圆上的点,当为椭圆的中心)时,椭圆的离心率为         

查看答案和解析>>

同步练习册答案