精英家教网 > 高中数学 > 题目详情
已知正四棱锥P—ABCD的棱长都等于a,侧棱PB、PD的中点分别为M、N,则截面AMN与底面ABCD所成二面角的大小为

A.                 B.arctan             C.                 D.arccos

B

解析:如图,正四棱锥P—ABCD中,O为正方形ABCD的两对角线的交点,则PO⊥面ABCD,PO交MN于E,则PE=EO,又BD⊥AC,

∴BD⊥面PAC,过A作直线l∥BD,则l⊥EA,l⊥AO,

∴∠EAO为所求二面角的平面角.又EO=AO=a,AO=a,

∴tan∠EAO=.

∴二面角的大小为arctan.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知正四棱锥P-ABCD,PA=2,AB=
2
,M是侧棱PC的中点,则异面直线PA与BM所成角为
 
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知正四棱锥P-ABCD的全面积为2,记正四棱锥的高为h.
(1)用h表示底面边长,并求正四棱锥体积V的最大值;
(2)当V取最大值时,求异面直线AB和PD所成角的大小.
(结果用反三角函数值表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)已知正四棱锥P—ABCD中,PA=2,AB=,M是侧棱PC的中点,则异面直线PA与BM所成角的大小为__________.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知正四棱锥P-ABCD的全面积为2,记正四棱锥的高为h.
(1)用h表示底面边长,并求正四棱锥体积V的最大值;
(2)当V取最大值时,求异面直线AB和PD所成角的大小.
(结果用反三角函数值表示)

查看答案和解析>>

科目:高中数学 来源:2006-2007学年北京市海淀区高三(上)期末数学试卷(理科)(解析版) 题型:填空题

已知正四棱锥P-ABCD,PA=2,AB=,M是侧棱PC的中点,则异面直线PA与BM所成角为   

查看答案和解析>>

同步练习册答案