精英家教网 > 高中数学 > 题目详情
9.(1)求函数y=x(a-2x)(x>0,a为大于2x的常数)的最大值;
(2)已知a>0,b>0,c>0,a2+b2+c2=4,求ab+bc+ac的最大值.

分析 (1)由x>0,a>2x,y=x(a-2x)=$\frac{1}{2}$×2x(a-2x),运用基本不等式即可得到所求最大值;
(2)运用重要不等式,推出2ab+2bc+2ac≤2(a2+b2+c2),即可得到所求最大值.

解答 解:(1)∵x>0,a>2x,
∴y=x(a-2x)=$\frac{1}{2}$×2x(a-2x)≤$\frac{1}{2}{({\frac{2x+(a-2x)}{2}})^2}$=$\frac{a^2}{8}$,
当且仅当x=$\frac{a}{4}$时取等号,故函数的最大值为$\frac{a^2}{8}$.
(2)∵a2+b2+c2=4,
∴2ab+2bc+2ac≤(a2+b2)+(b2+c2)+(a2+c2)=2(a2+b2+c2)=8,
∴ab+bc+ac≤4,
当且仅当a=b=c时,取得等号,
∴ab+bc+ac的最大值为4.

点评 本题考查函数的最值的求法,注意运用变形和基本不等式,以及满足的条件,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=|x|(1+ax),设关于x的不等式f(x+a)>f(x)对任意x∈R恒成立,则实数a的取值范围是(  )
A.(-∞,-1)∪(1,+∞)B.(-1,0)∪(0,1)C.(1,+∞)D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.$\lim_{n→∞}[{\frac{1}{3}+\frac{1}{8}+…+\frac{1}{{n({n+2})}}}]$=$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.直线$y=-\frac{{\sqrt{3}}}{3}x+1$和x轴,y轴分别交于点A,B,以线段AB为一边在第一象限内作等边△ABC,则点C的坐标为$({\sqrt{3},2})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知平面内有A(-2,1),B(1,4),使$\overrightarrow{AC}$=$\frac{1}{2}$$\overrightarrow{CB}$成立的点C坐标为(-1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知复数z1=$\frac{3+i}{1-i}$的实部为a,复数z2=i(2+i)的虚部为b,复数z=b+ai的共轭复数在复平面内的对应点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=2x2-(m2+m+1)x+15,g(x)=m2x-m,其中m∈R.
(1)若f(x)+g(x)+m≥0,对x∈[1,4)恒成立,求实数m的取值范围;
(2)设函数$F(x)=\left\{{\begin{array}{l}{g(x),x≥0}\\{f(x),x<0}\end{array}}\right.$
①对任意的x1>0,存在唯一的实数x2<0,使其F(x1)=F(x2),求m的取值范围;
②是否存在求实数m,对任意给定的非零实数x1,存在唯一非零实数x2(x1≠x2),使其F(x2)=F(x1),若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.将号码分别为1,2,3,4的四个小球放入一个袋中,这些小球仅号码不同,其余完全相同,甲从袋中摸出一个小球,其号码为a,放回后,乙从此袋中再摸出一个小球,其号码为b,则使不等式a-2b+4<0成立的事件发生的概率为(  )
A.$\frac{1}{8}$B.$\frac{3}{16}$C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设函数f(x)=mx2-mx-1,g(x)=$\frac{f(x)}{x-1}$.
(1)若对任意x∈[1,3],不等式f(x)<5-m恒成立,求实数m的取值范围;
(2)当m=-$\frac{1}{4}$时,确定函数g(x)在区间(3,+∞)上的单调性.

查看答案和解析>>

同步练习册答案