精英家教网 > 高中数学 > 题目详情
17.已知△ABC中,角A,B,C的对边分别为a,b,c,A为锐角,且b=2$\sqrt{3}$,c=5,b=2asinB,求角A的大小和a的值.

分析 由正弦定理得asinB=bsinA,代入b=2asinB,解得sinA=$\frac{1}{2}$,又A为锐角,可求A,由余弦定理即可求a的值.

解答 (本小题满分12分)
解:由正弦定理$\frac{a}{sinA}=\frac{b}{sinB}$,得asinB=bsinA. …(3分)
代入b=2asinB得b=2bsinA,即sinA=$\frac{1}{2}$.…(6分)
又因为A为锐角,所以A=30°. …(8分)
由余弦定理得:a2=b2+c2-2bccosA=12+25-2×$2\sqrt{3}×5×\frac{\sqrt{3}}{2}$=7.…(11分)
所以a=$\sqrt{7}$.…(12分)

点评 本题主要考查了正弦定理,余弦定理在解三角形中的综合应用,熟练掌握定理是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.给定平面内三个向量$\overrightarrow{a}$=(3,2),$\overrightarrow{b}$=(-1,2),$\overrightarrow{c}$=(4,1)
(1)若($\overrightarrow{a}$+k$\overrightarrow{c}$)∥(2$\overrightarrow{b}$-$\overrightarrow{a}$),求实数k的值;
(2)若($\overrightarrow{a}$+k$\overrightarrow{c}$)⊥(2$\overrightarrow{b}$-$\overrightarrow{a}$),求实数k的值;
(3)设$\overrightarrow{d}$=(x,y),满足($\overrightarrow{d}$-$\overrightarrow{c}$)∥($\overrightarrow{a}$+$\overrightarrow{b}$),且|$\overrightarrow{d}$-$\overrightarrow{c}$|=1,求$\overrightarrow{d}$的坐标;
(4)求|$\overrightarrow{a}$+t$\overrightarrow{b}$|的最小值及相应的t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.将函数y=sin($\frac{1}{2}x$+$\frac{π}{3}$)的图象作怎样的变换可得到y=sinx的图象(  )
A.将y=sin($\frac{1}{2}x+\frac{π}{3}$)的图象向右平移$\frac{2π}{3}$个单位,再将所得图象所得点的横坐标变为原来的$\frac{1}{2}$
B.将y=sin($\frac{1}{2}x+\frac{π}{3}$)的图象向右平移$\frac{π}{3}$个单位,再将所得图象所得点的横坐标变为原来的$\frac{1}{2}$
C.将y=sin($\frac{1}{2}x+\frac{π}{3}$)的图象所有点的横坐标变为原来的2倍,再将所得图象向右平移$\frac{π}{3}$个单位
D.将y=sin($\frac{1}{2}x+\frac{π}{3}$)的图象所有点的横坐标变为原来的$\frac{1}{2}$倍,再将所得图象向右平移$\frac{2π}{3}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知命题:P:?x∈R,x2+1≤0,那么¬p是(  )
A.?x∈R,x2+1≤0B.?x∈R,x2+1≤0C.?x∈R,x2+1>0D.?x∈R,x2+1>0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知向量$\overrightarrow{a}$=(-1,2),$\overrightarrow{b}$=(2,3),若$\overrightarrow{m}$=λ$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{n}$=$\overrightarrow{a}$-$\overrightarrow{b}$的夹角为钝角,则实数λ的取值范围是λ<9,且λ≠-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=|x-1|+|2x+2|-5.解不等式f(x)≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x2-2ax+2,x∈[0,3].
(1)当a=1,求f(x)在定义域[0,3]上的最值;
(2)当a∈R时,求f(x)在定义域[0,3]上的最小值;
(3)若a∈R,求f(x)在定义域[0,3]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知cos(x-$\frac{π}{4}$)=$\frac{\sqrt{2}}{10}$,则sin(x+$\frac{π}{4}$)=$\frac{\sqrt{2}}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.化简:a${\;}^{\frac{1}{3}}$(a${\;}^{\frac{1}{3}}$-2b${\;}^{\frac{1}{3}}$)÷(a${\;}^{-\frac{2}{3}}$-$\frac{2\root{3}{b}}{a}$)×$\frac{\sqrt{a•\root{3}{{a}^{2}}}}{\root{5}{\sqrt{a}•}\root{3}{a}}$.

查看答案和解析>>

同步练习册答案