精英家教网 > 高中数学 > 题目详情
设函数f(x)=log
1
2
x+1
x-1

(1)判断函数f(x)的奇偶性,并证明;
(2)证明函数f(x)在(1,+∞)上是增函数;
(3)若x∈[3,+∞)时,不等式f(x)>(
1
2
)x+m
恒成立,求实数m的取值范围.
分析:(1)先判断函数的定义域关于原点对称,再用奇函数的定义判断;(2)不妨设u(x)=
x+1
x-1
,1<x1x2
,则可知函数为减函数,又f(x)=log
1
2
u(x)
,函数f(x)在(1,+∞)上是增函数;(3)易知取3时,函数取最小值,故可求.
解答:解:(1)函数f(x)是奇函数
x+1
x-1
>0
得x>1或x<-1,又f(-x)=log
1
2
-x+1
-x-1
=-f(x)
,∴函数f(x)是奇函数
(2)不妨设u(x)=
x+1
x-1
,1<x1x2
,则u(x1)-u(x2)=
2(x2-x1)
(x1-1)(x2-1)
,∵1<x1<x2,∴x1-1>0,x2-1>0,x2-x1>0,∴u(x1)-u(x2)=
2(x2-x1)
(x1-1)(x2-1)
>0
,∴u(x1)>u(x2),
f(x)=log
1
2
u(x)
,∴函数f(x)在(1,+∞)上是增函数;
(3)由题意,x∈[3,+∞)时,不等式f(x)>(
1
2
)x+m
恒成立,等价于f(3)-(
1
2
)
3
>m
,解得m<-
9
8
点评:本题主要考查奇函数的定义及单调性的证明,同时考查了分离参数法研究恒成立问题.
练习册系列答案
相关习题

科目:高中数学 来源:陕西省汉中地区2007-2008学年度高三数学第一学期期中考试试卷(理科) 题型:022

若函数f(x)=的定义域为M,g(x)=lo(2+x=6x2)的单调递减区间是开区间N,设全集U=R,则M∩CU(N)=________.

查看答案和解析>>

科目:高中数学 来源:苏教版江苏省扬州市2007-2008学年度五校联考高三数学试题 题型:044

已知函数(m∈R)

(1)若y=lo[8-f(x)]在[1,+∞)上是单调减函数,求实数m的取值范围;

(2)设g(x)=f(x)+lnx,当m≥-2时,求g(x)在上的最大值.

查看答案和解析>>

科目:高中数学 来源:山东省莒南一中2008-2009学年度高三第一学期学业水平阶段性测评数学文 题型:044

设f(x)=lo的奇函数,a为常数,

(Ⅰ)求a的值;

(Ⅱ)证明:f(x)在(1,+∞)内单调递增;

(Ⅲ)若对于[3,4]上的每一个x的值,不等式f(x)>()x+m恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案