精英家教网 > 高中数学 > 题目详情

【题目】设函数.

(1)当时,讨论函数的单调性;

(2)若对任意及任意 ,恒有成立,求实数的取值范围.

【答案】(1)详见解析;(2).

【解析】试题分析:

(1)由函数的导函数分类讨论可得:

时, 在定义域上是减函数;

时, 上单调递减,在上单调递增;

时, 上单调递减,在上单调递增.

(2)结合(1)的结论可得,构造函数,讨论可得.

试题解析:(1)

,即时, 上是减函数;

,即时,令,得;令,得

,即时,令,得;令,得

综上,当时, 在定义域上是减函数;

时, 上单调递减,在上单调递增;

时, 上单调递减,在上单调递增.

(2)由(1)知,当时, 上单调递减,

时, 有最大值,当时, 有最小值,

对任意,恒有 .

构造函数,则

.

函数上单调增.

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】13名医生,其中女医生6人,现从中抽调5名医生组成医疗小组前往灾区,若医疗小组至少有2名男医生,同时至多有3名女医生,设不同的选派方法种数为N,则下列等式:

①C135﹣C71C64②C72C63+C73C62+C74C61+C75

③C135﹣C71C64﹣C65④C72C113

其中能成为N的算式是______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在扶贫活动中,为了尽快脱贫(无债务)致富,企业甲将经营状况良好的某种消费品专卖店以5.8万元的优惠价格转让给了尚有5万元无息贷款没有偿还的小型企业乙,并约定从该店经营的利润中,首先保证企业乙的全体职工每月最低生活费的开支3 600元后,逐步偿还转让费(不计息).在甲提供的资料中:①这种消费品的进价为每件14元;②该店月销量Q(百件)与销量价格P(元)的关系如图所示;③每月需各种开支2 000元.

(1)当商品的价格为每件多少元时,月利润扣除职工最低生活费的余额最大?并求最大余额;

(2)企业乙只依靠该店,最早可望在几年后脱贫?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 ,圆 的圆心在椭圆上,点到椭圆的右焦点的距离为.

(1)求椭圆的标准方程;

(2)过点作互相垂直的两条直线,且交椭圆两点,直线交圆 两点,且的中点,求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,得曲线的极坐标方程为 .

(1)化曲线的参数方程为普通方程,化曲线的极坐标方程为直角坐标方程;

(2)直线为参数)过曲线轴负半轴的交点,求与直线平行且与曲线相切的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,圆,经过原点的两直线满足,且交圆于不同两点交 于不同两点,记的斜率为

(1)求的取值范围;

(2)若四边形为梯形,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量,向量,函数.

I)求单调递减区间;

II)已知分别为内角的对边,为锐角,,且恰是上的最大值,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P—ABCD中,PA⊥底面ABCDAB⊥ADAC⊥CD∠ABC60°PAABBCEPC的中点.

(1) 证明:AE⊥平面PCD

(2) PB和平面PAD所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动点P到定点F(1,0)和到直线x=2的距离之比为,设动点P的轨迹为曲线E,过点F作垂直于x轴的直线与曲线E相交于A,B两点,直线l:y=mx+n与曲线E交于C,D两点,与线段AB相交于一点(与A,B不重合).

(1)求曲线E的方程;

(2)当直线l与圆x2+y2=1相切时,四边形ABCD的面积是否有最大值?若有,求出其最大值及对应的直线l的方程;若没有,请说明理由.

查看答案和解析>>

同步练习册答案