试题分析:(I)将
代入得到每小时的耗油量,再根据路程算出行驶时间,从而得到了从甲地到乙地的耗油量;(Ⅱ)设耗油量为
升,通过每小时的耗油量及行驶时间得到
的表达式.再通过求导研究其单调性,从而得到
时
的最小值.即得当汽车以80千米/小时的速度匀速行驶时,从甲地到乙地耗油最少,最少为11.25升.
试题解析:(I)当
时,汽车从甲地到乙地行驶了
小时,
要耗油
(升).
答:当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地耗油17.5升.
(II)当速度为x千米/小时时,汽车从甲地到乙地行驶了
小时,设耗油量为
升,
依题意得
,
令
,得
.
当x∈(0,80)时,h'(x)<0,h(x)是减函数;
当x∈(80,120)时,h'(x)>0,h(x)是增函数.∴当x=80时,h(x)取到极小值h(80)=11.25.
因为h(x)在(0,120]上只有一个极值,所以它是最小值.
答:当汽车以80千米/小时的速度匀速行驶时,从甲地到乙地耗油最少,最少为11.25升. 13分