精英家教网 > 高中数学 > 题目详情
19.已知F1、F2是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,点P是该双曲线上的任意一点,若△PF1F2的内切圆半径为r,则r的取值范围是(  )
A.(0,a)B.(0,b)C.(0,$\sqrt{{a}^{2}+{b}^{2}}$)D.(0,$\sqrt{ab}$)

分析 根据题意,利用切线长定理,再利用双曲线的定义,把|PF1|-|PF2|=2a,转化为|HF1|-|HF2|=2a,从而求得点H的横坐标,即可求出△PF1F2的内切圆半径的取值范围.

解答 解:如图所示:F1(-c,0)、F2(c,0),
设内切圆与x轴的切点是点H,P在双曲线的右支上
PF1、PF2与内切圆的切点分别为M、N,
∵由双曲线的定义可得|PF1|-|PF2|=2a,
由圆的切线长定理知,|PM|=|PN|,故|MF1|-|NF2 |=2a,
即|HF1|-|HF2|=2a,
设内切圆的圆心I横坐标为x,内切圆半径r,则点H的横坐标为x,
故 (x+c)-(c-x)=2a,∴x=a,
设双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的渐近线的方程为y=±$\frac{b}{a}$x,
一条渐近线的倾斜角为2α,则tan2α=$\frac{b}{a}$,
由PF1的斜率小于渐近线的斜率,
∴$\frac{2•\frac{r}{c+a}}{1-\frac{{r}^{2}}{(c+a)^{2}}}$<$\frac{b}{a}$,
故2rca+2ra2<b(c+a)2-br2
∴r(c+a)2-rb2<b(c+a)2-br2
∴(r-b)[br+(a+c)2]<0,
∴0<r<b.
故选B.

点评 本题考查双曲线的定义、切线长定理,体现了转化的数学思想以及数形结合的数学思想,正确运用双曲线的定义是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知圆x2+y2=4,则圆上到直线3x-4y+5=0的距离为1的点个数为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设函数f(x)=$\overrightarrow a$•$\overrightarrow b$,其中向量$\overrightarrow a$=(2cosx,1),$\overrightarrow b$=(cosx,$\sqrt{3}$sin2x).
(Ⅰ)求函数f(x)的最小正周期及单调增区间;
(Ⅱ)求函数f(x)在区间[-$\frac{π}{4}$,$\frac{π}{6}$]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.月饼是久负盛名的中国传统小吃之一,月饼圆又圆,又是合家分吃,象征着团圆和睦,在中秋这一天是必食之品.某食品公司在中秋佳节推出中式月饼,港式月饼,欧式月饼三个系列,该食品公司对其全部42名内部员工实行优惠,对中秋节当天员工购买公司“月饼”情况进行统计,结果如下:(所有员工都参加了购买,且只购买一种)
其中购买欧式月饼的40岁以下员工占全部员工的三分之一.
  中式月饼 港式月饼 欧式月饼
 40岁以上(含40岁)员工人数 10 y 4
 40岁以下员工人数 2 6 x
(1)求x,y的值;
(2)能否在犯错误的概率不超过1%的情况下认为员工购买“欧式月饼”与年龄有关?
(3)已知甲、乙两位员工购买的是“欧式月饼”,依照购买的三个系列分类,按分层抽样的方法从员工中随机抽取7人,记甲、乙2人中被抽取到的人数为X,求X的分布列及数学期望.
参考数据:
P(K2≥k0)  0.10.01 0.01 
 k0 2.706 6.635 10.828

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知数列{an}中,a1=1,a2=3,且an+2=3an+1-2an,数列{bn}满足bn=an+1-an,则$\frac{lg{b}_{n+2}-lg{b}_{n+1}}{lg{b}_{n+1}-lg{b}_{n}}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.$lg2+lg5-\root{4}{2}×{8^{0.25}}-{2017^0}$=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知集合A={x|x2+x-2<0},B={x|2x>1},则A∩(∁UB)=(  )
A.(0,1)B.(-2,0)C.(-2,0]D.(-2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.阅读如图程序框图,运行相应的程序,则程序运行后输出的结果为(  )
A.7B.9C.10D.11

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若不等式组$\left\{\begin{array}{l}{x≥0}\\{x+3y≥4}\\{3x+y≤4}\end{array}\right.$,所表示的平面区域被直线y=kx+$\frac{4}{3}$分为面积相等的两部分,则k的值是$\frac{7}{3}$.

查看答案和解析>>

同步练习册答案