精英家教网 > 高中数学 > 题目详情

【题目】正方体中,是棱的中点,是侧面上的动点,且平面,记的轨迹构成的平面为

,使得

②直线与直线所成角的正切值的取值范围是

与平面所成锐二面角的正切值为

④正方体的各个侧面中,与所成的锐二面角相等的侧面共四个.

其中正确命题的序号是________.(写出所有正确命题的序号)

【答案】①②③④

【解析】

中点,中点,中点,先利用中位线的性质判断点的运动轨迹为线段,平面即为平面,画出图形,再依次判断:①利用等腰三角形的性质即可判断;②直线与直线所成角即为直线与直线所成角,设正方体的棱长为2,进而求解;③由,取中点,则,即为与平面所成的锐二面角,进而求解;④由平行的性质及图形判断即可.

中点,连接,则,所以,所以平面即为平面,

中点,中点,连接,则易证得,

所以平面平面,所以点的运动轨迹为线段,平面即为平面.

①取中点,因为是等腰三角形,所以,又因为,所以,故①正确;

②直线与直线所成角即为直线与直线所成角,设正方体的棱长为2,当点中点时,直线与直线所成角最小,此时,

当点与点或点重合时,直线与直线所成角最大,此时,

所以直线与直线所成角的正切值的取值范围是,②正确;

与平面的交线为,,取中点,则即为与平面所成的锐二面角,,所以③正确;

④正方体的各个侧面中,平面,平面,平面,平面与平面所成的角相等,所以④正确.

故答案为:①②③④

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知命题:函数上单调递增;命题:函数上单调递减.

(Ⅰ)若是真命题,求实数的取值范围;

(Ⅱ)若为真命题,为假命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着手机的发展,“微信”逐渐成为人们交流的一种形式.某机构对“使用微信交流”的态度进行调查,随机抽取了50人,他们年龄的频数分布及对“使用微信交流”赞成人数如下表.

年龄

(单位:岁)

[15,25)

[25,35)

[35,45)

[45,55)

[55,65)

[65,75]

频数

5

10

15

10

5

5

赞成人数

5

10

12

7

2

1

(1)若以“年龄45岁为分界点”,由以上统计数据完成下面2×2列联表,并判断是否有99%的把握认为“使用微信交流”的态度与人的年龄有关;

年龄不低于45岁的人数

年龄低于45岁的人数

合计

赞成

不赞成

合计

(2)若从年龄在[55,65)的被调查人中随机选取2人进行追踪调查,求2人中至少有1人不赞成“使用微信交流”的概率.

参考数据:

P(K2k0)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

K2,其中nabcd.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论的单调性;

2)设,且,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将编号为1234567的小球放入编号为1234567的七个盒子中,每盒放一球,若有且只有三个盒子的编号与放入的小球的编号相同,则不同的放法种数为( .

A.5040B.24C.315D.840

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆),点的左顶点,点上一点,离心率.

1)求椭圆的方程;

2)设过点的直线的另一个交点为(异于点),是否存在直线,使得以为直径的圆经过点,若存在,求出直线的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在给出的下列命题中,正确的是(

A.是同一平面上的四个点,若,则点必共线

B.若向量是平面上的两个向量,则平面上的任一向量都可以表示为,且表示方法是唯一的

C.已知平面向量满足为等腰三角形

D.已知平面向量满足,且,则是等边三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若,求出函数的单调区间及最大值;

2)若,求函数上的最大值的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,直线l的参数方程为m为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为,直线与曲线C交于MN两点.

(1)求直线l的普通方程和曲线C的直角坐标方程;

(2)求|MN|.

查看答案和解析>>

同步练习册答案