【题目】某市决定在其经济开发区一块区域进行商业地产开发,截止2015年底共投资百万元用于餐饮业和服装业,2016年初正式营业,经过专业经济师预算,从2016年初至2019年底的四年间,在餐饮业利润为该业务投资额的,在服装业可获利该业务投资额的算术平方根.
(1)该市投资资金应如何分配,才能使这四年总的预期利润最大?
(2)假设自2017年起,该市决定对所投资的区域设施进行维护保养,同时发放员工奖金,方案如下:2017年维护保养费用百万元,以后每年比上一年增加百万元;2017年发放员工奖金共计百万元,以后每年的奖金比上一年增加.若该市投资成功的标准是:从2016年初到2019的底,这四年总的预期利润中值(预期最大利润与最小利润的平均数)不低于总投资额的,问该市投资是否成功?
【答案】(1)该市在服装业投资额百万元,在餐饮业投资额为百万元,才能使这四年总的预期利润最大;(2)该市投资成功.
【解析】试题分析:(1)设在服装业投资额为百万元,则在餐饮业投资额为百万元,两行业利润之和为,,换元后利用配方法可求得最大值及取得最大值时的 值;(2)先求得最大利润与最小利润,进而可得四年总的预期利润中值,与总投资额的比较,即可得结果.
试题解析:(1)设在服装业投资额为百万元,由题意得,
化简得,,
令,则,当时,即时,函数取得最大值 ,
答:该市在服装业投资额百万元,在餐饮业投资额为百万元,才能使这四年总的预期利润最大.
(2)由(1)得若不考虑区域维护保养以及奖金发放,
当时,;当时,;
从2017年初到2019年底维护保养费为百万元;
从2017年初到2019年底发放员工奖金为百万元.
所以这四年的预期利润中值为百万元,占总投资额的
大于总投资额的,符合该市投资成功的标准.
科目:高中数学 来源: 题型:
【题目】定义在R上的函数f(x)满足f(x)=f(x+4),当2≤x≤6时, ,f(4)=31.
(1)求m,n的值;
(2)比较f(log3m)与f(log3n)的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分) 函数f(x)是定义在R上的偶函数,已知当x≤0时,f(x)=x2+4x+3.
(1)求函数f(x)的解析式;
(2)画出函数的图象,并写出函数f(x)的单调区间;
(3)求f(x)在区间[-1,2]上的值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量, .设 (t为实数).
(Ⅰ)若,求当取最小值时实数t的值;
(Ⅱ)若⊥,问:是否存在实数t,使得向量-和向量的夹角为,若存在,请求出t;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,直线的参数方程是(为参数),以为极点, 轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为,且直线与曲线交于两点.
(Ⅰ)求曲线的直角坐标方程及直线恒过的定点的坐标;
(Ⅱ)在(Ⅰ)的条件下,若,求直线的普通方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com