精英家教网 > 高中数学 > 题目详情
(2012•大连模拟)已知A、B、C是△ABC的三个内角,且满足2sinB=sinA+sinC,设B的最大值为B0
(Ⅰ)求B0的大小;
(Ⅱ)当B=
3B04
时,求cosA-cosC的值.
分析:(Ⅰ)利用正弦定理化简已知的等式得到2b=a+c,表示出b,再利用余弦定理表示出cosB,将表示出的b代入,整理后,利用基本不等式可得出cosB的最小值,根据余弦函数在(0,π)上单调递减,利用特殊角的三角函数值即可求出B的最大值;
(Ⅱ)设所求的式子为x,记作①,由B与B0的关系及B0的度数,求出B的度数,代入已知的等式sinA+sinC=2sinB中,得到sinA+sinC的关系式,记作②,由①2+②2化简后,根据B的度数,求出A+C的度数,代入化简后的式子中,得到关于x的方程,求出方程的解得到x的值,即为所求式子的值.
解答:解:(Ⅰ)由2sinB=sinA+sinC,利用正弦定理化简得:2b=a+c,即b=
a+c
2

由余弦定理知cosB=
a2+c2-b2
2ac
=
a2+c2-(
a+c
2
)
2
2ac
(2分)
=
3(a2+c2)-2ac
8ac
3(2ac)-2ac
8ac
=
1
2
,(4分)
∵y=cosx在(0,π)上单调递减,
则B的最大值为B0=
π
3
;(6分)
(Ⅱ)设cosA-cosC=x,①(8分)
∵B=
3B0
4
=
π
4

∴sinA+sinC=2sinB=
2
,②
由①2+②2得,2-2cos(A+C)=x2+2.(10分)
又A+C=π-B=
4

∴x=±
42
,即cosA-cosC=±
42
.(12分)
点评:此题考查了正弦、余弦定理,基本不等式,余弦函数的单调性,诱导公式,以及特殊角的三角函数值,熟练掌握定理及公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•大连模拟)已知函数f(x)=ax-1-lnx(a∈R).
(Ⅰ)讨论函数f(x)在定义域内的极值点的个数;
(Ⅱ)若函数f(x)在x=1处取得极值,对?x∈(0,+∞),f(x)≥bx-2恒成立,求实数b的取值范围;
(Ⅲ)当0<x<y<e2且x≠e时,试比较
y
x
1-lny
1-lnx
的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•大连模拟)已知某程序框图如图所示,则该程序运行后,输出的结果为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•大连模拟)设集合A={(x,y)||x|+|y|≤2},B={(x,y)∈A|y≤x2},从集合A中随机地取出一个元素P(x,y),则P(x,y)∈B的概率是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•大连模拟)在平行四边形ABCD中,∠BAD=60°,AD=2AB,若P是平面ABCD内一点,且满足x
AB
+y
AD
+
PA
=
0
(x,y∈R),则当点P在以A为圆心,
3
3
|
BD
|
为半径的圆上时,实数x,y应满足关系式为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•大连模拟)若(
x
-
a
x2
)n
展开式中二项式系数之和是1024,常数项为45,则实数a的值是
±1
±1

查看答案和解析>>

同步练习册答案