精英家教网 > 高中数学 > 题目详情

【题目】如图1,在直角梯形中,为线段的中点.将沿折起,使平面平面,得到几何体,如图2所示.

(1)求证:平面平面

(2)求二面角的余弦值.

【答案】(1)见解析.

(2).

【解析】

(1)由勾股定理可证明利用面面垂直的性质可得平面从而得,由线面垂直的判定定理可得平面,进而利用面面垂直的判定定理可得结果;(2)作,以轴建立坐标系,分别利用向量垂直数量积为零,列方程组求出平面与平面的法向量,由空间向量夹角余弦公式可得结果.

(1)在图1中,可得,从而,故

中点连结,则,又面

,从而平面,∴

,∴平面,故平面平面

(2)

建立空间直角坐标系如图所示,则

为面的法向量,

,解得

,可得

为面的一个法向量,

,∴二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校20名同学的数学和英语成绩如下表所示:

将这20名同学的两颗成绩绘制成散点图如图:

根据该校以为的经验,数学成绩与英语成绩线性相关.已知这名学生的数学平均成绩为,英语平均成绩,考试结束后学校经过调查发现学号为同学与学号为同学(分别对应散点图中的)在英语考试中作弊,故将两位同学的两科成绩取消.

取消两位作弊同学的两科成绩后,求其余同学的数学成绩与英语成绩的平均数;

取消两位作弊同学的两科成绩后,求数学成绩x与英语成绩y的线性回归直线方程,并据此估计本次英语考试学号为8的同学如果没有作弊的英语成绩.(结果保留整数)

附:位同学的两科成绩的参考数据:

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在统计学中,偏差是指个别测定值与测定的平均值之差,在成绩统计中,我们把某个同学的某刻考试成绩与该科班平均分的差叫某科偏差,班主任为了了解个别学生的偏科情况,对学生数学偏差(单位:分)与物理偏差(单位:分)之间的关系进行偏差分析,决定从全班40位同学中随机抽取一个容量为8的样本进行分析,得到他们的两科成绩偏差数据如表:

(1)已知之间具有线性相关关系,求关于的线性回归方程;

(2)若这次考试该班数学平均分为120分,物理平均分为92,试预测数学成绩126分的同学的物理成绩.

参考公式:

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设圆的圆心为A,直线过点B(1,0)且与轴不重合,交圆ACD两点,过BAC的平行线交AD于点E.

(Ⅰ)证明:为定值,并写出点E的轨迹方程;

(Ⅱ)设点E的轨迹为曲线C1,直线C1M,N两点,过B且与垂直的直线与C1交于P,Q两点, 求证:是定值,并求出该定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

)若函数在其定义域内单调递减,求实数的取值范围;

)若,且关于的方程上恰有两个不相等的实数根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】大型综艺节目《最强大脑》中,有一个游戏叫做盲拧魔方,就是玩家先观察魔方状态并进行记忆,记住后蒙住眼睛快速还原魔方.根据调查显示,是否喜欢盲拧魔方与性别有关.为了验证这个结论,某兴趣小组随机抽取了100名魔方爱好者进行调查,得到的部分数据如表所示:已知在全部100人中随机抽取1人抽到喜欢盲拧的概率为

喜欢盲拧

不喜欢盲拧

总计

10

20

总计

100

表(1)

并邀请这100人中的喜欢盲拧的人参加盲拧三阶魔方比赛,其完成时间的频率分布如表所示:

完成时间(分钟)

[0,10)

[10,20)

[20,30)

[30,40]

频率

0.2

0.4

0.3

0.1

表(2)

(Ⅰ)将表(1)补充完整,并判断能否在犯错误的概率不超过0.001的前提下认为是否喜欢盲拧与性别有关?

(Ⅱ)现从表(2)中完成时间在[30,40] 内的人中任意抽取2人对他们的盲拧情况进行视频记录,记完成时间在[30,40]内的甲、乙、丙3人中恰有一人被抽到为事件A,求事件A发生的概率.

(参考公式:,其中

P(K2≥k0

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(10分)若集合A={x|x2+5x﹣6=0},B={x|x2+2(m+1)x+m2﹣3=0}.

(1)若m=0,写出A∪B的子集;

(2)若A∩B=B,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的左右焦点分别为,离心率为.若点为椭圆上一动点,的内切圆面积的最大值为.

(1)求椭圆的标准方程;

(2)过点作斜率为的动直线交椭圆于两点,的中点为,在轴上是否存在定点,使得对于任意值均有,若存在,求出点的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的函数f(x),满足当x>0时,f(x)>1,且对任意的xy,有f(1)2,.

1)求f(0)的值;

2)求证:对任意x,都有f(x)>0

3)解不等式f(32x)>4

查看答案和解析>>

同步练习册答案