【题目】如图,等腰梯形中,,,,为中点,以为折痕把折起,使点到达点的位置(平面).
(Ⅰ)证明:;
(Ⅱ)若直线与平面所成的角为,求二面角的余弦值.
【答案】(I)见解析;(II).
【解析】
(I)先证明,再证明;(II)在平面POB内作PQ⊥OB,垂足为Q,
证明OP⊥平面ABCE,以O为原点,OE为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,利用向量法求二面角的余弦值.
(I)证明:在等腰梯形ABCD中,连接BD,交AE于点O,
∵AB||CE,AB=CE,∴四边形ABCE为平行四边形,∴AE=BC=AD=DE,
∴△ADE为等边三角形,∴在等腰梯形ABCD中,,,
∴在等腰中,
∴,即BD⊥BC,
∴BD⊥AE,
翻折后可得:OP⊥AE,OB⊥AE,又,,
;
(II)解:在平面POB内作PQ⊥OB,垂足为Q,
因为AE⊥平面POB,∴AE⊥PQ,
因为OB平面ABCE, AE平面ABCE,AE∩OB=O
∴PQ⊥平面ABCE,∴直线PB与平面ABCE夹角为,
又因为OP=OB,∴OP⊥OB,
∴O、Q两点重合,即OP⊥平面ABCE,
以O为原点,OE为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,由题意得,各点坐标为,
设平面PCE的一个法向量为,
则
设,则y=-1,z=1,
∴,
由题意得平面PAE的一个法向量,
设二面角A-EP-C为,.
易知二面角A-EP-C为钝角,所以.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,动点E到定点和定直线的距离相等.
(1)求动点E的轨迹C的方程;
(2)设动直线与曲线C有唯一的公共点P,与直线相交于点Q,若,求证:点M的轨迹恒过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知曲线,曲线,P是平面上一点,若存在过点P的直线与都有公共点,则称P为“型点”.
(1)若,时,判断的左焦点是否为“型点”,并说明理由;
(2)设直线与有公共点,求证,进而证明原点不是“型点”;
(3)若圆内的任意一点都不是“型点”,试写出a、b满足的关系式,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】地球上的风能取之不尽,用之不竭.风能是淸洁能源,也是可再生能源.世界各国致力于发展风力发电,近10年来,全球风力发电累计装机容量连年攀升,中国更是发展迅猛,2014年累计装机容量就突破了,达到,中国的风力发电技术也日臻成熟,在全球范围的能源升级换代行动中体现出大国的担当与决心.以下是近10年全球风力发电累计装机容量与中国新增装机容量图. 根据所给信息,正确的统计结论是( )
A.截止到2015年中国累计装机容量达到峰值
B.10年来全球新增装机容量连年攀升
C.10年来中国新增装机容量平均超过
D.截止到2015年中国累计装机容量在全球累计装机容量中占比超过
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,且与双曲线有相同的焦点.
(1)求椭圆的方程;
(2)直线与椭圆相交于,两点,点满足,点,若直线斜率为,求面积的最大值及此时直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: 的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线: 与椭圆有且只有一个公共点.
(Ⅰ)求椭圆的方程及点的坐标;
(Ⅱ)设是坐标原点,直线平行于,与椭圆交于不同的两点、,且与直线交于点,证明:存在常数,使得,并求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列的前项和为,等比数列的前项和为,且
(1)设,求数列的通项公式;
(2)在(1)的条件下,且,求满足的所有正整数;
(3)若存在正整数,且,试比较与的大小,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com