精英家教网 > 高中数学 > 题目详情
已知A、B是直线l上任意两点,O是l外一点,若l上一点C满足=cosθ+cos2θ,则sin2θ+sin4θ+sin6θ=( )
A.1
B.-1+
C.1+
D.-1+或1+
【答案】分析:根据A、B、C三点共线,结合题中向量等式得到cosθ+cos2θ=1,从而cosθ=1-cos2θ=sin2θ,由此化简得sin2θ+sin4θ+sin6θ=1+cosθ-cos2θ,再由cosθ+cos2θ=1解出cosθ和cos2θ的值,代入即可得到所求的值.
解答:解:∵A、B、C三点在同一条直线l上
∴由=cosθ+cos2θ,得cosθ+cos2θ=1
因此,cosθ=1-cos2θ=sin2θ,
∴sin2θ+sin4θ+sin6θ=cosθ+cos2θ+cos3θ
结合cosθ+cos2θ=1,
得sin2θ+sin4θ+sin6θ=1+cos3θ=1+cosθ(1-cosθ)=1+cosθ-cos2θ
由cosθ+cos2θ=1解出cosθ=,得cos2θ=
∴sin2θ+sin4θ+sin6θ=1+-=-1+
故选:B
点评:本题给出向量含有三角函数系数的等式,求三角函数式的值.着重考查了向量的线性运算和同角三角函数基本关系等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知A、B是直线l上任意两点,O是l外一点,若l上一点C满足
OC
=cosθ
OA
+cos2θ
OB
,则sin2θ+sin4θ+sin6θ=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A、B是直线l上任意两点,O是l外一点,若l上一点C满足
OC
=
OA
cosθ+
OB
cos2θ
,则sin2θ+sin4θ+sin6θ的值是
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知A、B是直线l上任意两点,O是l外一点,若l上一点C满足
OC
=
OA
cosθ+
OB
cos2θ
,则sinθ+sin2θ+sin4θ+sin6θ的最大值是(  )
A.
2
B.
3
C.
5
D.
6

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省衢州市龙游中学高三(上)期中数学试卷(文科)(解析版) 题型:选择题

已知A、B是直线l上任意两点,O是l外一点,若l上一点C满足=cosθ+cos2θ,则sin2θ+sin4θ+sin6θ=( )
A.1
B.-1+
C.1+
D.-1+或1+

查看答案和解析>>

同步练习册答案