精英家教网 > 高中数学 > 题目详情

【题目】已知函数

1)用分段函数的形式表示函数的解析式,并画出上的大致图像;

2)若关于x的方程恰有一个实数解,求出实数m的取值范围组成的集合;

3)当时,求函数的值域.

【答案】1,图像见详解;(2;(3)答案不唯一,见详解

【解析】

1)根据去绝对值的方式求解分段函数即可;

2)可采取数形结合,令,结合图像即可求解;

3)当时,结合函数图形可知,应对函数定义域进行分类讨论,进一步求解值域即可

1,函数图像如图所示:

2,要使方程恰有一个实数解,即图像有且仅有一个交点,如图:求得

需满足

3)因为,对进行分类讨论;

时,,值域为

时,,值域为

现需对临界点进行确定,当,即时,,令,解得

时,

值域为

时,

值域为

时,

值域为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

1)若,求的值域;

2)当时,求的最小值

3)是否存在实数,同时满足下列条件:① ;② 的定义域为时,其值域为.若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据以往的经验,某建筑工程施工期间的降水量单位:对工期的影响如下表:

根据某气象站的资料,某调查小组抄录了该工程施工地某月前20天的降水量的数据,绘制得到降水量的折线图,如下图所示.

(1)求这20天的平均降水量;

(2)根据降水量的折线图,分别估计该工程施工延误天数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲

已知函数.

(1)求不等式的解集;

(2)若恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图(1),平面直角坐标系中,的方程为的方程为,两圆内切于点,动圆外切,与内切.

1)求动圆圆心的轨迹方程;

2)如图(2),过点作的两条切线,若圆心在直线上的也同时与相切,则称的一个“反演圆”

(ⅰ)当时,求证:的半径为定值;

(ⅱ)在(ⅰ)的条件下,已知均与外切,与内切,且的圆心为,求证:若的“反演圆”相切,则也相切。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中心在原点,焦点在x轴上的椭圆C的离心率为,且经过点M(1),过点P(2,1)的直线l与椭圆C相交于不同的两点AB.

1)求椭圆C的方程;

2)是否存在直线l,满足?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数集(,)具有性质P;对任意的i,j(),两数中至少有一个属于A.

(1)分别判断数集是否具有性质P,并说明理由;

(2)证明:,且;

(3)当时,若,求集合A.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中为常数且)在处取得极值.

(1)当时,求的极大值点和极小值点;

(2)若上的最大值为1,求的值.

查看答案和解析>>

同步练习册答案