精英家教网 > 高中数学 > 题目详情
如图,在多面体ABCDEF中,四边形ABCD是正方形,FA⊥平面ABCD,EFBC,FA=2,AD=3,∠ADE=45°,点G是FA的中点.
(1)求证:EG⊥平面CDE;
(2)在棱BC是否存在点M,使GM平面CDE,若存在,找出点M;若不存在,说明理由.
证明:(1)∵EFBC,ADBC,∴EFAD.
在四边形ADEF中,由FA=2,AD=3,∠ADE=45°,可证得EG⊥DE,
又由FA⊥平面ABCD,得AF⊥CD,
∵正方形ABCD中CD⊥AD,∴CD⊥平面ADEF,
∵EG?平面ADEF,∴CD⊥EG,
∵CD∩DE=D,∴EG⊥平面CDE;…(6分)
(2)在BC存在点M,BC=3BM,使GM平面CDE
取DE中点H,连接GM、GH、CH,
∵在梯形ADEF中,G是AF中点,
GH=
1
2
(AD+EF=2)
,GHAD,
∵BCAD,BC=AD=3,BC=3BM,∴CM=2=GH,GHCM,
∴四边形CHGM是平行四边形
∴GMCH,∴GM平面CDE.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

α、β是两个不重合的平面,在下列条件下,可判定αβ的是(  )
A.α、β都平行于直线l、m
B.α内有三个不共线的点到β的距离相等
C.l、m是α内的两条直线且lβ,mβ
D.l、m是两条异面直线且lα,mα,lβ,mβ

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(理)如图,四棱锥P-ABCD的底面是矩形,PA⊥面ABCD,PA=2
19
,AB=8,BC=6,点E是PC的中点,F在AD上且AF:FD=1:2.建立适当坐标系.
(1)求EF的长;
(2)证明:EF⊥PC.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,ABCD是正方形,PD⊥平面ABCD,PD=AB=2,E,F,G分别是PC,PD,BC的中点.
(1)求证:平面PAB平面EFG;
(2)在线段PB上确定一点Q,使PC⊥平面ADQ,并给出证明;
(3)证明平面EFG⊥平面PAD,并求点D到平面EFG的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,AB是⊙O的直径,C是圆周上不同于A,B的任意一点,PA⊥平面ABC,则四面体P-ABC的四个面中,直角三角形的个数有(  )
A.4个B.3个C.2个D.1个

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,点P为平行四边形ABCD外一点,且PD⊥平面ABCD,M为PC中点.
(1)求证:AP平面MBD;
(2)若AD⊥PB,求证:BD⊥平面PAD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,AB是圆O的直径,PA垂直于圆O所在的平面,M是圆周上异于A、B的任意一点,AN⊥PM,点N为垂足,求证:AN⊥平面PBM.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

四棱锥P-ABCD中,底面ABCD是边长为2的正方形,PB⊥BC,PD⊥CD,且PA=2,点E满足
PE
=
1
3
PD

(1)求证:PA⊥平面ABCD;
(2)求二面角E-AE-D的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正四棱柱ABCD-A1B1C1D1中,底面边长为2
2
,侧棱长为4,E、F分别是棱AB,BC的中点,EF与BD相交于G.
(1)求证:平面EFB1⊥平面BDD1B1
(2)求点B到平面B1EF的距离.

查看答案和解析>>

同步练习册答案