精英家教网 > 高中数学 > 题目详情

【题目】设函数为自然对数的底数), .

(1)若,且直线分别与函数的图象交于,求两点间的最短距离;

(2)若时,函数的图象恒在的图象上方,求实数的取值范围.

【答案】(1).(2)的取值范围是.

【解析】试题分析:

(1)由题意求得PQ长度的函数解析式,然后利用导函数可得.

(2),结合函数的性质和恒成立的条件可得的取值范围是.

试题解析:

(Ⅰ)因为,所以.令,即,因为,当时, ,所以,所以上递增,所以,∴时, 的最小值为,所以.

(Ⅱ)令

,因为时恒成立,所以函数上单调递增,∴时恒成立;

故函数上单调递增,所以时恒成立.

时, 单调递增,即.

恒成立.

时,因为单调递增,所以总存在,使在区间,导致在区间上单调递减,而,所以当时, ,这与恒成立矛盾,所以不符合题意,故符合条件的的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在各棱长均为4的直四棱柱中,底面为菱形, 为棱上一点,且.

(1)求证:平面平面

(2)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】教育学家分析发现加强语文乐队理解训练与提高数学应用题得分率有关,某校兴趣小组为了验证这个结论,从该校选择甲乙两个同轨班级进行试验,其中甲班加强阅读理解训练,乙班常规教学无额外训练,一段时间后进行数学应用题测试,统计数据情况如下面的列联表(单位:人)

(1)能够据此判断有97.5%把握热内加强语文阅读训练与提高数学应用题得分率有关?

(2)经过多次测试后,小明正确解答一道数学应用题所用的时间在5—7分钟,小刚正确解得一道数学应用题所用的时间在6—8分钟,现小明、小刚同时独立解答同一道数学应用题,求小刚比小明现正确解答完的概率;

(3)现从乙班成绩优秀的8名同学中任意抽取两人,并对他们点答题情况进行全程研究,记A、B两人中被抽到的人数为X,求X的分布列及数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,关于的不等式只有两个整数解,则实数的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆恰好经过椭圆的两个焦点和两个顶点.

(1)求椭圆的方程;

(2)经过原点的直线 (不与坐标轴重合)交椭圆两点, 轴,垂足为,连接并延长交椭圆,证明:以线段为直径的圆经过点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于x的不等式为12x2﹣ax>a2
(1)当a=2时,求不等式的解集;
(2)当a∈R时,求不等式的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等比数列{an}中,a2﹣a1=2,且2a2为3a1和a3的等差中项.
(1)求数列{an}的通项公式;
(2)设bn=2log3an+1,且数列{ }的前n项和为Tn . 求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高一某班的一次数学测试成绩(满分为100分)的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如图,据此解答如下问题;
(1)求分数在[50,60)的频率及全班的人数;
(2)求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间的矩形的高;
(3)根据频率分布直方图,估计该班数学成绩的平均数与中位数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱柱中,侧面为矩形, 的中点, 交于点 侧面.

(1)证明:

(2)若,求直线与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案