【题目】已知椭圆的离心率为,以为圆心,椭圆的短半轴长为半径的圆与直线相切.
(1)求椭圆的标准方程;
(2)已知点,和平面内一点,过点任作直线与椭圆相交于两点,设直线的斜率分别为,,试求满足的关系式.
【答案】(1);(2)
【解析】
试题分析:(1)因为离心率,所以,又以为圆心,椭圆的短半轴长为半径的圆与直线相切,所以,再结合,求得,,即求得椭圆标准方程;
(2)①当直线斜率不存在时,直线,直线与椭圆的交点,,所以,又,所以,所以的关系式为.②当直线的斜率存在时,设点,设直线,联立椭圆整理得:,根系关系略,所以化简得,结合韦达定理得,所以,所以的关系式为.
试题解析:(1)因为离心率,所以,
又因为以为圆心,椭圆的短半轴长为半径的圆与直线相切,
所以,即
因为,
所以
所以椭圆标准方程;
(2)①当直线斜率不存在时,由,解得,不妨设,,
因为,所以,所以的关系式为.
②当直线的斜率存在时,设点,设直线,联立椭圆整理得:,根系关系略,所以
所以,所以的关系式为.
科目:高中数学 来源: 题型:
【题目】已知向量 , ,函数的图象过点,点与其相邻的最高点的距离为.
(1)求的单调递增区间;
(2)计算;
(3)设函数,试讨论函数在区间上的零点个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组:第一组,第二组,…,第五组,下图是按上述分组方法得到的频率分布直方图.
(1)根据频率分布直方图,估计这50名学生百米测试成绩的平均值;
(2)若从第一组、第五组中随机取出两个成绩,求这两个成绩的差的绝对值大于1的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,椭圆和抛物线交于两点,且直线恰好通过椭圆的右焦点.
(1)求椭圆的标准方程;
(2)经过椭圆右焦点的直线和椭圆交于两点,点在椭圆上,且,
其中为坐标原点,求直线的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】根据某电子商务平台的调查统计显示,参与调查的位上网购物者的年龄情况如下图.
(1)已知、、三个年龄段的上网购物者人数成等差数列,求的值;
(2)该电子商务平台将年龄在之间的人群定义为高消费人群,其他的年龄段定义为潜在消费人群,为了鼓励潜在消费人群的消费,该平台决定发放代金券,高消费人群每人发放元的代金券,潜在消费人群每人发放元的代金券.已经采用分层抽样的方式从参与调查的位上网购物者中抽取了人,现在要在这人中随机抽取人进行回访,求此三人获得代金券总和的分布列与数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com