分析 (1)根据斜率之积是-$\frac{1}{2}$.可得动点P的轨迹C的方程
(2)设MN的中点坐标为(x0,y0),联立$\left\{\begin{array}{l}\frac{x^2}{2}+{y^2}=1\\ y=kx+1\end{array}\right.$得到(2k2+1)x2+4kx=0,根据根与系数的关系以及点P在直线x+2y=0上即可求出斜率k,问题得以解决.
解答 解:(1)设$P(x,y)(x≠±\sqrt{2})$,
由${k_{AP}}•{k_{BP}}=\frac{y}{{x+\sqrt{2}}}•\frac{y}{{x-\sqrt{2}}}=-\frac{1}{2}$,
整理得$\frac{{x}^{2}}{2}$+y2=1,x≠$±\sqrt{2}$
(2)设MN的中点坐标为(x0,y0),
联立$\left\{\begin{array}{l}\frac{x^2}{2}+{y^2}=1\\ y=kx+1\end{array}\right.$得(2k2+1)x2+4kx=0,
所以${x_0}=\frac{-2k}{{2{k^2}+1}},{y_0}=k{x_0}+1=\frac{1}{{2{k^2}+1}}$,
由x0+2y0=0,得k=1,
所以直线的方程为:y=x+1
点评 本题考查椭圆方程的求法,考查直线方程的求法,解题时要认真审题,计算要准确,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com