精英家教网 > 高中数学 > 题目详情
18.偶函数f(x)满足:f(x+2)=f(x)当0<x≤1,f(x)=2x,则f(log212)=$\frac{4}{3}$.

分析 利用函数的周期,转化所求表达式求解即可.

解答 解:f(x+2)=f(x),可得函数的周期为:2,当0<x≤1,f(x)=2x
f(log212)=f(log212-2)=f(log23)=f(log23-2)=f(log2$\frac{3}{4}$)=f(-log2$\frac{3}{4}$)=f(log2$\frac{4}{3}$)=${2}^{{log}_{2}\frac{4}{3}}$=$\frac{4}{3}$.
故答案为:$\frac{4}{3}$.

点评 本题考查抽象函数的应用,函数的奇偶性以及函数值的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.给出下列三个集合,指出它们之间的关系,并加以区别;A={x|y=x2+1},B={y|y=x2+1},C={(x,y)|y=x2+1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an},{bn}满足2Sn=(an+2)bn,其中Sn是数列{an}的前n项和.
(1)若数列{an}是首项为$\frac{2}{3}$,公比为-$\frac{1}{3}$的等比数列,求数列{bn}的通项公式;
(2)若bn=n,a2=3,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.“-$\sqrt{2}$≤k≤$\sqrt{2}$”是“直线x-y+k=0与圆x2+y2=1相交”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知直线l经过点(3,-3),在x轴、y轴上的截距之差为4,且两截距都不为零,则两截距之积为-12.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=2sinx-1-m在x∈[$\frac{π}{3}$,$\frac{7π}{6}$]上有零点,则实数m的取值范围是[-2,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.$\frac{cos610°}{sin10°•cos10°}$等于(  )
A.2B.1C.-2D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设$\overrightarrow a$,$\overrightarrow b$,$\overrightarrow e$为平面向量,若$|{\overrightarrow e}|=1$,$\overrightarrow a•\overrightarrow e=1$,$\overrightarrow b•\overrightarrow e=2$,$|{\overrightarrow a-\overrightarrow b}|=2$,则$|{\overrightarrow a+\overrightarrow b}|$的最小值为3,$\overrightarrow a•\overrightarrow b$的最小值为$\frac{5}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某学生参加3个项目的体能测试,若该生第一个项目测试过关的概率为$\frac{4}{5}$,第二个项目、第三个项目测试过关的概率分别为x,y(x>y),且不同项目是否能够测试过关相互独立,记ξ为该生测试过关的项目数,其分布列如下表所示:
ξ0123
P$\frac{6}{125}$ab$\frac{24}{125}$
(1)求该生至少有2个项目测试过关的概率;
(2)求ξ的数学期望E(ξ).

查看答案和解析>>

同步练习册答案