精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)求此函数的极大值,并请直接写出此函数的零点个数

2)若函数,且此函数在区间内单调递增,求实数的取值范围.

【答案】(1) 极大值;2个零点;(2).

【解析】

1)利用导数判断函数单调性从而确定极大值,由,且上单调递减知在定义域内有两个零点;(2)由题意得对任意的恒成立,则,利用导数求出函数的最大值即可求得a的范围.

1)函数的定义域为

,令,解得

所以函数上单调递减,在上单调递增,

处取得极大值

因为,所以为函数的一个零点,

,且上单调递减,

所以上有一个零点,所以函数在定义域内有两个零点;

2,则

若函数在区间内单调递增,则对任意的恒成立,

对任意的恒成立,

,令,故

时,,当时,

所以上单调递减,在上单调递增,且

所以当时,,所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为(为参数),在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,曲线 .

(1)判断直线与曲线的位置关系;

(2)若是曲线上的动点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,为多面体,平面与平面垂直,点在线段上, 都是正三角形.

(1)证明:直线∥面

(2)在线段上是否存在一点,使得二面角的余弦值是,若不存在请说明理由,若存在请求出点所在的位置。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】019年底,湖北省武汉市等多个地区陆续出现感染新型冠状病毒肺炎的患者,为及时有效地对疫情数据进行流行病学统计分析,某地研究机构针对该地实际情况,根据该地患者是否有武汉旅行史与是否有确诊病例接触史,将新冠肺炎患者分为四类:有武汉旅行史(无接触史),无武汉旅行史(无接触史),有武汉旅行史(有接触史)和无武汉旅行史(有接触史),统计得到以下相关数据:

1)请将列联表填写完整,并判断能否在犯错误的概率不超过0.01的前提下,认为有武汉旅行史与有确诊病例接触史有关系?

有接触史

无接触史

总计

有武汉旅行史

4

无武汉旅行史

10

总计

25

45

2)已知在无武汉旅行史的10名患者中,有2名无症状感染者.现在从无武汉旅行史的10名患者中,选出2名进行病例研究,记选出无症状感染者的人数为,求的分布列以及数学期望.

下面的临界值表供参考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.076

3.841

5.024

6.635

7.879

10.828

参考公式:,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥的底面为直角梯形,底面,且的中点.

1)求证:直线平面

2)若,求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将边长为2的等边△ABC沿x轴正方向滚动,某时刻A与坐标原点重合(如图),设顶点A(x,y)的轨迹方程是y=f(x),关于函数y=f(x)有下列说法:

①f(x)的值域为[0,2];

②f(x)<f(4)<f(2018);

③f(x)是周期函数且周期为6;

④滚动后,当顶点A第一次落在x轴上时,f(x)的图象与x轴所围成的图形的面积为

其中正确命题的序号是_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某次数学测验共有12道选择题,每道题共有四个选项,且其中只有一个选项是正确的,评分标准规定:每选对1道题得5分,不选或选错得0分. 在这次数学测验中,考生甲每道选择题都按照规则作答,并能确定其中有9道题能选对;其余3道题无法确定正确选项,在这3道题中,恰有2道能排除两个错误选项,另1题只能排除一个错误选项. 若考生甲做这3道题时,每道题都从不能排除的选项中随机挑选一个选项作答,且各题作答互不影响.在本次测验中,考生甲选择题所得的分数记为

1)求的概率;

2)求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数上的最大值为.

1)若点的图象上,求函数图象的对称中心;

2)将函数的图象向右平移个单位,再将所得的图象纵坐标不变,横坐标缩小到原来的,得函数的图象,若上为增函数,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】20191216日,公安部联合阿里巴巴推出的“钱盾反诈机器人”正式上线,当普通民众接到电信网络诈骗电话,公安部钱盾反诈预警系统预警到这一信息后,钱盾反诈机器人即自动拨打潜在受害人的电话予以提醒,来电信息显示为“公安反诈专号”.某法制自媒体通过自媒体调查民众对这一信息的了解程度,从5000多参与调查者中随机抽取200个样本进行统计,得到如下数据:男性不了解这一信息的有50人,了解这一信息的有80人,女性了解这一信息的有40.

1)完成下列列联表,问:能否在犯错误的概率不超过0.01的前提下,认为200个参与调查者是否了解这一信息与性别有关?

了解

不了解

合计

男性

女性

合计

2)该自媒体对200个样本中了解这一信息的调查者按照性别分组,用分层抽样的方法抽取6人,再从这6人中随机抽取3人给予一等奖,另外3人给予二等奖,求一等奖与二等奖获得者都有女性的概率.

附:

P(K2k)

0.01

0.005

0.001

k

6.635

7.879

10.828

查看答案和解析>>

同步练习册答案