精英家教网 > 高中数学 > 题目详情
11.已知实数x,y满足$\left\{\begin{array}{l}{y≤x}\\{x+y≤1}\\{y≥-1}\end{array}\right.$,则(x-2)2+y2的最小值为$\frac{1}{2}$.

分析 由约束条件作出可行域,(x-2)2+y2的几何意义为可行域内动点(x,y)与定点P(2,0)距离的平方,然后结合点到直线的距离公式得答案.

解答 解:由约束条件$\left\{\begin{array}{l}{y≤x}\\{x+y≤1}\\{y≥-1}\end{array}\right.$作出可行域如图,

(x-2)2+y2的几何意义为可行域内动点(x,y)与定点P(2,0)距离的平方.
由图可知,P(2,0)与可行域内动点距离的最小值为d=$\frac{|1×2-1|}{\sqrt{2}}=\frac{\sqrt{2}}{2}$.
∴(x-2)2+y2的最小值等于${d}^{2}=(\frac{\sqrt{2}}{2})^{2}=\frac{1}{2}$.
故答案为:$\frac{1}{2}$.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.对某电子元件进行寿命追踪调查,所得情况如频率分布直方图.(1)图中纵坐标y0处刻度不清,根据图表所提供的数据还原y0
(2)根据图表的数据按分层抽样,抽取20个元件,寿命为100~300之间的应抽取几个;
(3)从(2)中抽出的寿命落在100~300之间的元件中任取2个元件,求事件“恰好有一个寿命为100~200,一个寿命为200~300”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.数列{an}满足:a1=2014,an-an•an+1=1,ln表示an的前n项之积,则l2014=-2014.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.过直角坐标平面xOy中的抛物线y2=2px的焦点F作一条倾斜角为$\frac{π}{4}$的直线与抛物线相交于A,B两点.
(1)若p=2,求A,B两点间的距离;
(2)当p∈(0,+∞)时,判断∠AOB是否为定值.若是,求出其余弦值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知A,B,C为△ABC的三个内角,命题p:A=B;命题q:sinA=sinB.则¬p是¬q的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.有5位工人在某天生产同一零件,所生产零件个数的茎叶图如图所示,已知它们生产零件的平均数为10,标准差为$\sqrt{2}$,则|x-y|的值为(  )
(注:标准差s=$\sqrt{\frac{1}{n}[({x}_{1}-\overline{x})^{2}+({x}_{2}-\overline{x})^{2}+…+({x}_{n}-\overline{x})^{2}]}$,其中$\overline{x}$为x1,x2,…,xn的平均数)
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知等差数列{an}满足:a3=13,a13=33,则数列{an}的公差为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图是一个几何体的三视图,其俯视图的面积为8$\sqrt{2}$,则该几何体的表面积为(  )
A.8B.20+8$\sqrt{2}$C.16D.24+8$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知f(x)是定义域为R的奇函数,且当x>0时,f(x)=2x
(1)求函数f(x)的解析式及其值域;
(2)设x0是方程f(x)=4-x的解,且x0∈(n,n+1),n∈Z,求n的值;
(3)若存在x≥1,使得(a+x)f(x)<1成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案