【题目】多面体,,,,,,,在平面上的射影是线段的中点.
(1)求证:平面;
(2)若,求二面角的余弦值.
科目:高中数学 来源: 题型:
【题目】已知椭圆:的左焦点为,点在椭圆上.
(1)求椭圆的方程;
(2)圆是以椭圆的焦距为直径的圆,点是椭圆的右顶点,过点的直线与圆相交于,两点,过点的直线与椭圆相交于另一点,若,求面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以下说法:
①三条直线两两相交,则他们一定共面.
②存在两两相交的三个平面可以把空间分成9部分.
③如图是正方体的平面展开图,则在这个正方体中,一定有平面且平面平面.
④四面体所有的棱长都相等,则它的外接球表面积与内切球表面积之比是9.
其中正确的是______
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】把一个均匀的正方体骰子抛掷两次,观察出现的点数,记第一次出现的点数为,第二次出现的点数为,设直线:,直线:.
(1)求直线和直线没有交点的概率;
(2)求直线和直线的交点在第一象限的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的对称轴为坐标轴,焦点在轴上,离心率为,且经过点.
(1)求椭圆的方程;
(2)设直线与椭圆相交于、两点,且,,若原点在以为直径的圆外,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,.
(Ⅰ)令
①当时,求函数在点处的切线方程;
②若时,恒成立,求的所有取值集合与的关系;
(Ⅱ)记,是否存在,使得对任意的实数,函数在上有且仅有两个零点?若存在,求出满足条件的最小正整数,若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com