精英家教网 > 高中数学 > 题目详情

【题目】已知等差数列和等比数列,其中的公差不为.设是数列

的前项和.若是数列的前项,且.

(Ⅰ)求数列的通项公式;

(Ⅱ)若数列为等差数列,求实数

(Ⅲ)构造数列,…,,…,,…,

若该数列前项和,求的值.

【答案】(Ⅰ);(Ⅱ);(Ⅲ)34.

【解析】试题分析:

(1)由题意列出方程组求得数列的首项,公差,则其通项公式为,进一步即可求得数列的通项公式为

(2)利用等差数列的通项公式是关于n的一次函数列出方程组,求解方程组可得;

(3)结合题意分组求和得到关于m的方程,解方程讨论可得.

试题解析:

Ⅰ)设等差数列的公差为),由是数列的前项,且

,因为,所以,故的通项公式为;而,所以等比数列的公比

的通项公式为

Ⅱ)由(Ⅰ)知,因为数列为等差数列,所以可设

所以总成立,不妨设

总成立,取

,解得,即

解得.令

时,,因为,所以为等差数列;

时,,因为,所以为等差数列.

综上,

另解:由(Ⅰ)知,因为数列为等差数列,所以必成等差数列,所以,即,解得

时,,因为,所以为等差数列;

时,,因为,所以为等差数列.

综上,

Ⅲ)设从各项的和为,则

因为,所以

,因此

时,,当时,,所以,可设 后面有项,则,所以,因此

,即的值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知f(x)=|2x﹣1|.
(1)求f(x)≤3x的解集;
(2)求f(x)+|x+1|≤1的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求f(x)的定义域和值域;

(2)判断f(x)的奇偶性与单调性;

(3)解关于x的不等式f(x2﹣2x+2)+f(﹣5)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的方程为,双曲线的一条渐近线与轴所成的夹角为,且双曲线的焦距为.

(1)求椭圆的方程;

(2)设分别为椭圆的左,右焦点,过作直线 (与轴不重合)交椭圆于 两点,线段的中点为,记直线的斜率为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的一系列对应值如下表:

(1)根据表格提供的数据求函数的一个解析式;

(2)根据(1)的结果,若函数周期为,当时,方程 恰有两个不同的解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知下列命题:

意味着每增加一个单位,平均增加8个单位

投掷一颗骰子实验,有掷出的点数为奇数和掷出的点数为偶数两个基本事件

互斥事件不一定是对立事件,但对立事件一定是互斥事件

在适宜的条件下种下一颗种子,观察它是否发芽,这个实验为古典概型

其中正确的命题有__________________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知m>0, .

(1) 若p是q的充分不必要条件,求实数m的取值范围;

(2) 若m=5,“”为真命题,“”为假命题,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面上,点A、C为射线PM上的两点,点B、D为射线PN上的两点,则有 (其中SPAB、SPCD分别为△PAB、△PCD的面积);空间中,点A、C为射线PM上的两点,点B、D为射线PN上的两点,点E、F为射线PL上的两点,则有 =(其中VPABE、VPCDF分别为四面体P﹣ABE、P﹣CDF的体积).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l:

1证明直线l经过定点并求此点的坐标;

2若直线l不经过第四象限,求k的取值范围;

3若直线lx轴负半轴于点A,交y轴正半轴于点B,O为坐标原点,设的面积为S,求S的最小值及此时直线l的方程.

查看答案和解析>>

同步练习册答案