精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)求证:当时,对任意恒成立;

(2)求函数的极值;

(3)时,若存在,满足,求证:.

【答案】(1)见解析 (2)极小值,无极大值. (3)见解析

【解析】

1)求导得到,即,函数单调递增,得到证明.

2,讨论两种情况,分别计算极值得到答案.

3上为增函数,当时不成立,不防设

,计算得到即证,设,只需证,计算最值得到证明.

(1)

,,

上为增函数,

所以当时,恒有成立;

(2)

上为增函数,无极值

上为减函数,在上为增函数,

有极小值,无极大值,

综上知:当无极值,

有极小值,无极大值.

(3)上为增函数,

(2)知,当,上为增函数,

这时,上为增函数,

所以不可能存在,

满足

所以有

现不防设得:

由①②式可得:

又要证即证

即证……④

所以由③式知,只需证明:即证

,只需证,即证:

上为增函数,

成立,

所以由③知,成立,

所以成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】近年来,网络电商已经悄然进入了广大市民的日常生活,并慢慢改变了人们的消费方式为了更好地服务民众,某电商在其官方APP中设置了用户评价反馈系统,以了解用户对商品状况和优惠活动的评价现从评价系统中随机抽出200条较为详细的评价信息进行统计,商品状况和优惠活动评价的2×2列联表如下:

对优惠活动好评

对优惠活动不满意

合计

对商品状况好评

100

20

120

对商品状况不满意

50

30

80

合计

150

50

200

I)能否在犯错误的概率不超过0.001的前提下认为优惠活动好评与商品状况好评之间有关系?

(Ⅱ)为了回馈用户,公司通过APP向用户随机派送每张面额为0元,1元,2元的三种优惠券用户每次使用APP购物后,都可获得一张优惠券,且购物一次获得1元优惠券,2元优惠券的概率分别是,各次获取优惠券的结果相互独立若某用户一天使用了APP购物两次,记该用户当天获得的优惠券面额之和为X,求随机变量X的分布列和数学期望.

参考数据

PK2k

0.150

0.100

0.050

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

参考公式:K2,其中na+b+c+d

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知为椭圆的上顶点,P为椭圆E上异于上、下顶点的一个动点.当点P的横坐标为时,

1)求椭圆E的标准方程;

2)设Mx轴的正半轴上的一个动点.

①若点P在第一象限内,且以AP为直径的圆恰好与x轴相切于点M,求AP的长.

②若,是否存在点N,满足,且AN的中点恰好在椭圆E上?若存在,求点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的焦点在轴上.

1)若椭圆的焦距为1,求椭圆的方程;

2)设分别是椭圆的左、右焦点,为椭圆上的第一象限内的点,直线轴与点,并且,证明:当变化时,点在某定直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一饮料店制作了一款新饮料,为了进行合理定价先进行试销售,其单价(元)与销量(杯)的相关数据如下表:

单价(元)

8.5

9

9.5

10

10.5

销量(杯)

120

110

90

70

60

1)已知销量与单价具有线性相关关系,求关于的线性回归方程;

2)若该款新饮料每杯的成本为8元,试销售结束后,请利用(1)所求的线性回归方程确定单价定为多少元时,销售的利润最大?(结果四舍五入保留到整数)

附:线性回归方程中斜率和截距最小二乗法估计计算公式:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(Ⅰ)设x1y1,证明x+yxy

(Ⅱ)1abc,证明logab+logbc+logcalogba+logcb+logac

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,平面多边形中,AE=ED,AB=BD,且,现沿直线,将折起,得到四棱锥.

(1)求证: ;

(2)若,求PD与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且椭圆的右顶点到直线的距离为3.

1)求椭圆的方程;

2)过点的直线与椭圆交于两点,求的面积的最大值(为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若直线是曲线的一条切线,求k的值;

2)当时,直线与曲线无交点,求整数k的最大值.

查看答案和解析>>

同步练习册答案