(本小题满分12分)已知函数,.
(1)当时,求函数的单调区间和极值;
(2)若恒成立,求实数的值.
(1)函数的减区间为,增区间为,极小值为,无极大值;(2).
【解析】
试题分析:本题综合考察函数与导数及运用导数求单调区间、极值、最值等数学知识和方法,突出考查综合运用数学知识和方法分析问题、解决问题的能力.第一问,将代入,先得到的表达式,注意到定义域中,对求导,根据,判断出的单调增区间,,判断出的单调减区间,通过单调性判断出极值的位置,求出极值;第二问,先将恒成立转化为恒成立,所以整个这一问只需证明即可,对求导,由于,所以须讨论的正负,当时,,所以判断出在上为增函数,但是,所以当时,不符合题意,当时,判断出在上为减函数,上为增函数,但是,必须证明出,所以再构造新函数,判断函数的最值,只有时符合.
试题解析:⑴解:注意到函数的定义域为,
,
当时, , 2分
若,则;若,则.
所以是上的减函数,是上的增函数,
故,
故函数的减区间为,增区间为,极小值为,无极大值.---5分
⑵解:由⑴知,
当时,对恒成立,所以是上的增函数,
注意到,所以时,不合题意. 7分
当时,若,;若,.
所以是上的减函数,是上的增函数,
故只需. 9分
令,
,
当时,; 当时,.
所以是上的增函数,是上的减函数.
故当且仅当时等号成立.
所以当且仅当时,成立,即为所求. 12分
考点:1.利用导数研究函数的单调性;2.利用导数求函数的极值、最值;3.恒成立问题.
科目:高中数学 来源: 题型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的、、.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com